精英家教网 > 高中数学 > 题目详情
4.已知直线l1∥l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为1,2,B是直线l2上一动点,∠BAC=90°,AC与直线l1交于点C,则△ABC面积的最小值为2.

分析 过A作l1、l2的垂线,分别交l1、l2于E、F,则AE=1,AF=2,设∠FAC=θ,则AC=$\frac{1}{cosθ}$,AB=$\frac{2}{sinθ}$,推导出△ABC面积为S=$\frac{2}{sin2θ}$,由此能求出△ABC面积的最小值.

解答 解:过A作l1、l2的垂线,分别交l1、l2于E、F,
则AE=1,AF=2,
设∠FAC=θ,则Rt△ACF中,AC=$\frac{1}{cosθ}$,
Rt△ABE中,∠ABE=θ,
可得AB=$\frac{2}{sinθ}$,
∴△ABC面积为S=$\frac{1}{2}$×AB×AC=$\frac{1}{2}×\frac{1}{cos}×\frac{2}{sinθ}$=$\frac{2}{sin2θ}$,
∵θ∈(0,$\frac{π}{2}$)
∴当且仅当θ=$\frac{π}{2}$时,sin2θ=1达到最大值1,
此时△ABC面积有最小值2.
故答案为:2.

点评 本题考查三角形面积的最小值的求法,考查三角函数、二面角公式、三角形面积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin(2x+$\frac{π}{4}$),x∈R.
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)说明函数f(x)=2sin(2x+$\frac{π}{4}$),x∈R的图象可由正弦曲线y=sinx经过怎样的变化得到;
(Ⅲ)若f($\frac{α}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{3}}{2}$.α是第二象限的角,求sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地政府调查了工薪阶层1000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,其中工资收入分组区间是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](单位:百元)
(Ⅰ)为了了解工薪阶层对工资收入的满意程度,要用分层抽样的方法从调查的1000人中抽取100人做电话询问,求月工资收入在[30,35)内应抽取的人数;
(Ⅱ)根据频率分布直方图估计这1000人的平均月工资为多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx,函数$g(x)=sin(ωx-\frac{π}{6})$(ω>0)满足$g(0)=-g(\frac{π}{2})$,且y=g(x)在$(0,\frac{π}{2})$上有且仅有三个零点.
(1)求ω的值;
(2)若ω>5,且m∈[0,4],求函数$y=g(\frac{x}{3}-\frac{π}{18})-mf(x)$在$x∈[0,\frac{π}{6}]$内的最小值;
(3)设F(x)=ln(f(x)+1),求证:对于任意的x1,x2,当$0<{x_2}<{x_1}<\frac{π}{2}$时,有:$\frac{{f({x_1})-f({x_2})}}{{F({x_1})-F({x_2})}}>\sqrt{(f({x_1})+1)•(f({x_2})+1)}$.(注:函数$h(x)=x-\frac{1}{x}-2lnx$在区间[1,+∞)上单调递增.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一个周期内的图象如图所示,若已知函数数f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,则f(x1+x2)=(  )
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的奇函数,其最小正周期为3,当x∈(-$\frac{3}{2}$,0)时,f(x)=log${\;}_{\frac{1}{2}}$(1-x),则f(2011)+f(2013)=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若{$\frac{{a}_{n}}{n}$+1}是公比为2的等比数列,且a1=1,则a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知奇函数f(x)在R上是增函数.若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足(1-i)z=2+2i(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

同步练习册答案