精英家教网 > 高中数学 > 题目详情
15.某地政府调查了工薪阶层1000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,其中工资收入分组区间是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](单位:百元)
(Ⅰ)为了了解工薪阶层对工资收入的满意程度,要用分层抽样的方法从调查的1000人中抽取100人做电话询问,求月工资收入在[30,35)内应抽取的人数;
(Ⅱ)根据频率分布直方图估计这1000人的平均月工资为多少元.

分析 (Ⅰ)由频率分布直方图得月工资收入在[30,35)内的频率,由此能求出月工资收入在[30,35)内应抽取的人数.
(Ⅱ)根据频率分布直方图能估计这1000人的平均月工资.

解答 解:(Ⅰ)由频率分布直方图得月工资收入在[30,35)内的频率为:
1-(0.02+0.04+0.05+0.05+0.01)×5=0.15,
∴月工资收入在[30,35)内应抽取的人数为:100×0.15=15.
(Ⅱ)根据频率分布直方图估计这1000人的平均月工资为:
$\overline{x}$=12.5×0.02×5+17.5×0.04×5+22.5×0.05×5+27.5×0.5×5+32.5×0.15+37.5×0.01×5=87.875(百元)=8787.5(元).

点评 本题考查频率分布直方图的应用,考查数据处理能力、运算求解能力,考查化归与转化思想、数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=1,an+an+1=3×2n-1
(Ⅰ)求a2,a3,a4,猜想{an}的通项公式,并用数学归纳法证明;
(Ⅱ)设bn=log2an+1+$\sqrt{2}$,求证:数列{bn}中任意三项均不成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$cosωx),$\overrightarrow{b}$=(2+cos2ωx,sinωx)(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在区间[m,n]上单调,且|m-n|的最大值是$\frac{π}{2}$.则f($\frac{π}{2}$)=(  )
A.2B.$\frac{7}{4}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《张邱建算经》:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第3人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是(  )
A.193B.194C.195D.196

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知如图,圆C、椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)均经过点M(2,$\sqrt{2}$),圆k的圆心为($\frac{5}{2}$,0),椭圆E的两焦点分别为F1(-2,0),F2(2,0)
(Ⅰ)分别求圆C和椭圆E的标准方程;
(Ⅱ)过F1作直线l与圆C交于A、B两点,试探究|F1A|•|F2B|是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.半期考试结束后,某教师随机抽取了本班五位同学的数学成绩进行统计,五位同学平均每天学习数学的时间t(分钟)和数学成绩y之间的一组数据如下表所示:
 时间t 30 40 70 90 120
 成绩y 35 48 m 82 92
通过分析,发现数学成绩y对学习数学的时间t具有线性相关关系,其回归方程为$\widehat{y}$=0.7t+15,则表格中m的值是63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一袋子中装有大小相同的白球和黑球共m个,其中有白球4个,若从中任取2个球,则都是白球的概率为$\frac{1}{6}$,现从袋中不放回的摸球两次,每次摸出1个球,则在第一次摸出黑球的条件下,第二次摸出的还是黑球的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1∥l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为1,2,B是直线l2上一动点,∠BAC=90°,AC与直线l1交于点C,则△ABC面积的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.我们用圆的性质类比球的性质如下:
①p:圆心与弦(非直径)中点的连线垂直于弦;q:球心与小圆截面圆心的连线垂直于截面.
②p:与圆心距离相等的两条弦长相等;    q:与球心距离相等的两个截面圆的面积相等.
③p:圆的周长为C=πd(d是圆的直径);    q:球的表面积为S=πd2(d是球的直径).
④p:圆的面积为S=$\frac{1}{2}$R•πd(R,d是圆的半径与直径);q:球的体积为V=$\frac{1}{3}$R•πd2(R,d是球的半径与直径).
则上面的四组命题中,其中类比得到的q是真命题的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案