精英家教网 > 高中数学 > 题目详情
10.我们用圆的性质类比球的性质如下:
①p:圆心与弦(非直径)中点的连线垂直于弦;q:球心与小圆截面圆心的连线垂直于截面.
②p:与圆心距离相等的两条弦长相等;    q:与球心距离相等的两个截面圆的面积相等.
③p:圆的周长为C=πd(d是圆的直径);    q:球的表面积为S=πd2(d是球的直径).
④p:圆的面积为S=$\frac{1}{2}$R•πd(R,d是圆的半径与直径);q:球的体积为V=$\frac{1}{3}$R•πd2(R,d是球的半径与直径).
则上面的四组命题中,其中类比得到的q是真命题的有(  )个.
A.1B.2C.3D.4

分析 类比推理注意二维到三维过程中的变化,平面变立体,面积变体积.

解答 解:我们用圆的性质类比球的性质如下:
①p:圆心与弦(非直径)中点的连线垂直于弦;q:球心与小圆截面圆心的连线垂直于截面,故正确;
②p:与圆心距离相等的两条弦长相等;    q:与球心距离相等的两个截面圆的面积相等,故正确;
③p:圆的周长为C=πd(d是圆的直径);    q:球的表面积为S=πd2(d是球的直径),故正确;
④p:圆的面积为S=$\frac{1}{2}$R•πd(R,d是圆的半径与直径);q:球的体积为V=$\frac{1}{3}$R•πd2(R,d是球的半径与直径),故正确,
故选:D.

点评 本题考查了类比推理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某地政府调查了工薪阶层1000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,其中工资收入分组区间是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](单位:百元)
(Ⅰ)为了了解工薪阶层对工资收入的满意程度,要用分层抽样的方法从调查的1000人中抽取100人做电话询问,求月工资收入在[30,35)内应抽取的人数;
(Ⅱ)根据频率分布直方图估计这1000人的平均月工资为多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若{$\frac{{a}_{n}}{n}$+1}是公比为2的等比数列,且a1=1,则a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知奇函数f(x)在R上是增函数.若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为正项等比数列,则有$\root{5}{{{b}_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{{b}_{1}b}_{2}b}_{3}••{•b}_{15}}$成立”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图1所示,在△ABC中,AB⊥AC,AD⊥BC,则AB2=BD•BC.类似有命题:在三棱锥A-BCD中,如图2所示,AD⊥面ABC.若A在△BCD内的射影为O,E在BC上,且E,O,D在同一条直线上,则S△ABC2=S△BCO•S△BCD,此命题是(  )
A.假命题
B.增加AB⊥AC的条件才是真命题
C.真命题
D.增加三棱锥A-BCD是正棱锥的条件才是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一个特征向量.
(1)求实数a的值;
(2)求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足(1-i)z=2+2i(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某高校从4名男大学生志愿者和3名女大学生志愿者中选3名派到3所学校支教(每所学校1名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有(  )
A.210种B.180种C.150种D.120种

查看答案和解析>>

同步练习册答案