精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,等差数列满足

1)分别求数列的通项公式;

2)若对任意的,恒成立,求实数的取值范围.

【答案】1)由----①----②

a2=3,a1=1也满足上式,∴an=3n-1----------------3

-----------------6

2

恒成立,即恒成立,-----8

时,,当时,--------------10

----------12

【解析】

试题(1)根据条件等差数列满足,将其转化为等差数列基本量的求解,从而可以得到的通项公式,根据可将条件中的变形得到,验证此递推公式当n=1时也成立,可得到是等比数列,从而得到的通项公式;

2)根据(1)中所求得的通项公式,题中的不等式可转化为,从而问题等价于求,可求得当n=3时,为最大项,从而可以得到

1)设等差数列公差为,则

解得, (2分)

时,,则

是以1为首项3为公比的等比数列,则. (6分);

2)由(1)知,,原不等式可化为8分)

若对任意的恒成立,,问题转化为求数列的最大项

,则,解得,所以, (10分)

的最大项为第项,,所以实数的取值范围. (12分).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·四川)某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队。
(1)求A中学至少有1名学生入选代表队的概率.
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
据茎叶图能得到的统计结论的标号为( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)一种作图工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且.当栓子D在滑槽AB内作往复运动时,带动N绕O转动一周(D不动时,N也不动),M处的笔尖画出的曲线记为C.以O为原点,AB所在的直线为轴建立如图2所示的平面直角坐标系.
(1)求曲线C的方程;
(2)设动直线与两定直线分别交于两点.若直线总与曲线C有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证AC平面PDO;
(2)求三棱锥P-ABC体积的最大值;
(3)若BC=,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,
(1)(Ⅰ)求的定义域,并讨论的单调性;
(2)(Ⅱ)若,求内的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,求解下列问题:(1)求 的单调区间;(2)在锐角 △ A B C 中,角 ∠ A , B , C ,的对边分别为 a , b , c ,若 = 0 , a = 1 ,求 △ A B C 面积的最大值.
(1)求的单调区间;
(2)在锐角中,角,的对边分别为,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又存在零点的是
A.y=COSx
B.y=SINx
C.y=lnx
D.y=+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.

(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足 .记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.

查看答案和解析>>

同步练习册答案