精英家教网 > 高中数学 > 题目详情
10.观察下列各式:55=3125,56=15625,57=78125,…,则52017的末四位数字为(  )
A.3125B.5625C.0625D.8125

分析 根据题意,进而求出58、59、510、511、512的值,归纳分析其末四位数字的变化规律,即可得答案.

解答 解:根据题意,55=3125,其末四位数字为3125,
56=15625,其末四位数字为5625,
57=78125,其末四位数字为8125,
58=390625,其末四位数字为0625,
59=1953125,其末四位数字为3125,
510=9765625,其末四位数字为5625,
511=48828125,其末四位数字为8125,
512=244140625,其末四位数字为0625,

分析可得:54k+1的末四位数字为3125,54k+2的末四位数字为5625,54k+3的末四位数字为8125,54k+4的末四位数字为0625,(k≥2)
又由2017=4×504+1,则52017的末四位数字为3125;
故选:A.

点评 本题考查归纳推理的运用,关键是分析末四位数字的变化规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若f(x)=ex-ax2+(a-e)x有三个不同的零点,则实数a的取值范围是(  )
A.(0,+∞)B.(0,e)C.[1,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.全集U=R,集合A={-1,0,1},B={x|$\frac{x-2}{x+1}$>0},则A∩(∁UB)=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx
(1)求f(x)的极值
(2)当${x_1},x{\;}_2∈(\frac{1}{e},1)$且x1<1-x2时,求证:lnx1+lnx2<4ln(x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定积分${∫}_{0}^{1}$(x+sinx)dx的值为(  )
A.$\frac{3}{2}$-cos1B.$\frac{{π}^{2}}{2}$+1C.πD.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程$\frac{{x}^{2}}{2m}$-$\frac{{y}^{2}}{m-1}$=1表示焦点在y轴上的椭圆,命题q:双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的离心率e∈(1,2),若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明:$\sqrt{3}+2\sqrt{2}<2+\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤x}\\{x+y≥1}\end{array}\right.$,则z=3x+y的最大值为(  )
A.1B.2C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合P={x|x+$\frac{1}{x}$≤2,x∈Z},集合Q={x|x2+2x-3>0},则P∩∁RQ=(  )
A.[-3,0)B.{-3,-2,-1}C.{-3,-2,-1,0,1}D.{-3,-2,-1,1}

查看答案和解析>>

同步练习册答案