精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)对任意x都有f(x)=f(4-x),若x∈[2,+∞)时,f(x)单调递增,则当2<a<4时,有( )
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.f(2)<f(log2a)<f(2a
D.f(log2a)<f(2a)<f(2)
【答案】分析:本题是一个比较大小的题,先研究函数f(x)的单调性,比较自变量的大小,再据单调性比较这几个数的大小.通过对题设的分析,可以看到函数图象是关于x=2对称的.
解答:解:由题设函数f(x)对任意x都有f(x)=f(4-x),故其对称轴轴为x=2,
又x∈[2,+∞)时,f(x)单调递增,故当x∈(-∞,2)时f(x)单调递减,
故可知,点离对称轴x=2的距离越远,相应的函数值越大.
由于2<a<4,所以2a∈(4,16),log2a∈(1,2)
故|2a-2|>|log2a-2|
由上证得f(2)<f(log2a)<f(2a
故应选C.
点评:本题巧妙地借助函数图象的特征比较大小,这是解题中应该总结、掌握的经验.由本题的求解过程也可以看出熟能生巧的道理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案