精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2
(Ⅰ)写出函数f(x)的导函数,并用定义证明;
(Ⅱ)求函数f(x)图象在点P(1,f(1))处的切线方程.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:计算题,导数的概念及应用
分析:(Ⅰ)函数y=x2上任取点P(x0,x02),Q(x0+△x,(x0+△x)2),则△x→0时,
△y
△x
→2x0
(Ⅱ)求得f′(1)=2,f(1)=1,即可求出函数f(x)图象在点P(1,f(1))处的切线方程.
解答: 解:(Ⅰ)∵f(x)=x2,∴f′(x)=2x,
证明如下:函数y=x2上任取点P(x0,x02),Q(x0+△x,(x0+△x)2),则
△y
△x
=
(x0+△x)2-x02
△x
=2x0+△x,
∴△x→0时,
△y
△x
→2x0
∴f′(x)=2x;
(Ⅱ)f′(1)=2,f(1)=1,
∴函数f(x)图象在点P(1,f(1))处的切线方程为y-1=2(x-1),即y=2x-1.
点评:本题考查利用导数研究曲线上某点切线方程,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,设AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则
b
c
+
c
b
的取值范围是(  )
A、[2,
5
]
B、[2,
6
]
C、[3,
5
]
D、[3,
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-mx+n(m,n∈R).
(1)若n=2.且不等式f(x)≤0在[0,4]上有解,试求m的最小值;
(2)若x1,x2是方程f(x)=0的两实根,且满足0<x1<2<x2<4,试求m+n的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD中(图1),E是BC的中点,DB=2,DC=1,BC=
5
,AB=AD=
2
,将(图1)沿直线BD折起,使二面角A-BD-C为60°(如图2)
(1)求证:AE⊥平面BDC;
(2)求直线AE与平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店经营一批进价为每件5元的商品,在市场调查时发现,此商品的销售单价x与日销售量y之间有如下关系:
x 5 6 7 8
y 10 8 7 3
(1)求x,y之间的线性回归方程;
(2)当销售单价为4元时,估计日销售量是多少?(结果保留整数)(参考数据:
4
i=1
xiyi-4
.
x
.
y
=-11,
4
i=1
xi2-4
.
x
2=5,
4
i=1
yi2-4
.
y
2=26)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
sinωx•sin(ωx+
π
2
)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为
π
6

(1)求函数f(x)图象向右平移
π
6
个单位后,再将得到的图象上各点横坐标伸长到原来2倍的函数解析式.
(2)若将函数f(x)上各点横坐标伸长到的原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(a∈R).
(1)讨论f(x)=ex-ax-1(a∈R)的单调性;
(2)若a=1,求证:当x≥0时,f(x)≥f(-x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等比数列{an}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则am•an2•ap=as•at2•ar.类比此结论,可得到等差数列{bn}的一个正确命题,该命题为:在等差数列{bn}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,则
 

查看答案和解析>>

同步练习册答案