精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD中(图1),E是BC的中点,DB=2,DC=1,BC=
5
,AB=AD=
2
,将(图1)沿直线BD折起,使二面角A-BD-C为60°(如图2)
(1)求证:AE⊥平面BDC;
(2)求直线AE与平面ADC所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)先根据条件得到BD⊥平面AEM;进而通过求边长得到AE⊥ME;即可得到结论;
(2)先建立空间直角坐标系,求出平面ADC的法向量的坐标,再代入向量的夹角计算公式即可.
解答: (1)证明:如图1取BD中点M,连接AM,ME.
∵AB=AD=
2

∴AM⊥BD
∵DB=2,DC=1,BC=
5

DB2+DC2=BC2
∴△BCD是BC为斜边的直角三角形,BD⊥DC,
∵E是BC的中点,∴ME为△BCD的中位线
∴ME∥CD,ME=
1
2
CD,
∴ME⊥BD,ME=
1
2

∴∠AME是二面角A-BD-C的平面角,
∴∠AME=60°…(3分)
∵AM⊥BD,ME⊥BD且AM、ME是平面AME内两相交于M的直线,
∴BD⊥平面AEM∵AE?平面AEM,
∴BD⊥AE
∵AB=AD=
2
,DB=2,
∴△ABD为等腰直角三角形,
∴AM=
1
2
BD=1,
∴AAE2=AM2+ME2-2AM•ME•cos∠AME=
3
4

∴AE=
3
2

∴AE2+ME2=1=AM2
∴AE⊥ME=M,
∴BD∩ME,BD?平面BDC,ME?面BDC,
∴AE⊥平面BDC   …(6分)
(2)解:如图2,以M为原点MB为x轴,ME为y轴,建立空间直角坐标系M-xyz,
则由(1)及已知条件可知B(1,0,0),E(0,
1
2
,0),A(0,
1
2
3
2
),D(-1,0,0),C(-1,1,0),
DA
=(1,
1
2
3
2
),
DC
=(0,1,0),
AE
=(0,0,-
3
2
),…(8分)
设平面ACD的法向量为
n
=(x,y,z)
x+
1
2
y+
3
2
z=0
y=0
,∴
n
=(
3
,0,-2),
设直线AE与平面ADC所成角为α,则sinα=
3
7
3
2
=
2
7
7
  …(10分)
∴直线AE与平面ADC所成角的正弦值为
2
7
7
       …(12分)
点评:本题主要考察线面垂直的证明以及二面角的求法.一般在证明线面垂直时,先转化为证明线线垂直.进而得到线面垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,且a2+a5=2am,则m等于(  )
A、6B、7C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+1-lnx,其中a∈R是常数.
(1)若曲线y=[f(x)]2在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)试讨论直线y=-x+e(e为自然对数的底数)与曲线y=f(x)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-4x+6
①当x∈R时,画出函数图象,根据图象写出函数的增区间、减区间;
②当x∈[1,4]时,求出函数的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O(0,0),A(-2,a)(a∈R是常数),动点P满足
PO
PA
=3.
(1)求动点P的轨迹;
(2)若直线l:x+2y-2=0上有且仅有一点Q,使
QO
QA
=3,求常数a的值;并求此时直线l与直线OA夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2
(Ⅰ)写出函数f(x)的导函数,并用定义证明;
(Ⅱ)求函数f(x)图象在点P(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某耗水量较大的企业为积极响应政府号召,对生产设备进行技术改造,以达到节约用水的目的.下表提供了该企业节约用水技术改造后生产某产品过程中记录的产量x(吨)与相应的生产用水y(吨)的几组对照数据:
x 2 3 4 5
y 3 3.5 4.7 6
(1)请根据表中提供的数据,计算
.
x
.
y
的值,已知x,y之间呈线性相关关系,求y关于x的线性回归方程
y
=
b
x+
a
,并解释
b
的含义;
(参考数据:
4
i=1
xi2=54,
4
i=1
xiyi=65.3)
(2)已知该厂技术改造前100吨该产品的生产用水为130吨,试根据(1)中求出的线性回归方程,预测技术改造后生产100吨该产品的用水量比技术改造前减少了多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α-
π
3
)=4cosα,求
cos(
π
2
-α)sin(π+α)
cos(4π+α)sin(3π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1
x=3+cosθ
y=sinθ
(θ为参数)和曲线C2:ρ=1上,则|AB|的最小值为
 

查看答案和解析>>

同步练习册答案