精英家教网 > 高中数学 > 题目详情
1.三棱锥P-ABC中,PC⊥平面ABC,PC=6,BC⊥AC,D,E分别是线段AB.BC上的点,且CD=DE=2$\sqrt{2}$,CE=2EB=4
(Ⅰ)证明:DE⊥平面PCD;
(Ⅱ)设点Q为线段PB上一点,且直线QC与平面PCD所成角为30°,求$\frac{PQ}{PB}$的值;
(Ⅲ)求二面角A-PD-C的余弦值.

分析 (I)由PC⊥平面ABC得PC⊥DE,由勾股定理逆定理得出DE⊥CD,于是DE⊥平面PCD;
(II)取CE中点F,连接DF,则DF⊥CE,故而DF∥AC,利用比例式得出AC,以C为原点建立坐标系,设$\frac{PQ}{PB}$=λ,求出$\overrightarrow{QC}$和$\overrightarrow{DE}$的坐标,令|cos<$\overrightarrow{QC},\overrightarrow{DE}$>|=$\frac{1}{2}$解出λ;
(III)求出平面PAD的法向量$\overrightarrow{n}$,计算cos<$\overrightarrow{n}$,$\overrightarrow{DE}$>,从而得出二面角的大小.

解答 证明:(Ⅰ)∵PC⊥平面ABC,DE?平面ABC,
∴PC⊥DE,
∵CD=DE=2$\sqrt{2}$,CE=4,
∴CD2+DE2=CE2,∴CD⊥DE,
又PC?平面PCD,CD?平面PCD,PC∩CD=C,
∴DE⊥平面PCD.
(Ⅱ)由(I)知△CDE为等腰直角三角形,
取CE中点F,连接DF,则DF⊥CE,
且CF=DF=EF=2,
又AC⊥BC,∴DF∥AC.
∴$\frac{DF}{AC}=\frac{BF}{BC}=\frac{4}{6}$,
∴AC=3.
以C为坐标原点,分别以CA,CB,CP为坐标轴建立空间直角坐标系,
则C(0,0,0),P(0,0,6),D(2,2,0),A(3,0,0),B(0,6,0),E(0,4,0).
∴$\overrightarrow{PB}$=(0,6,-6),$\overrightarrow{DE}$=(-2,2,0),$\overrightarrow{PC}$=(0,0,-6).
设$\frac{PQ}{PB}=λ$,则$\overrightarrow{PQ}$=λ$\overrightarrow{PB}$=(0,6λ,-6λ).∴$\overrightarrow{QC}$=$\overrightarrow{PC}-\overrightarrow{PQ}$=(0,-6λ,6λ-6).
∵DE⊥平面PCD,∴$\overrightarrow{DE}$=(-2,2,0)是平面PCD的一个法向量,
又直线QC与平面PCD所成角为30°,
∴|cos<$\overrightarrow{QC},\overrightarrow{DE}$>|=$\frac{1}{2}$,即$\frac{12λ}{2\sqrt{2}•\sqrt{36{λ}^{2}+(6λ-6)^{2}}}$=$\frac{1}{2}$,解得λ=$\frac{1}{2}$.
∴$\frac{PQ}{PB}$=$\frac{1}{2}$.
(Ⅲ)$\overrightarrow{AD}$=(-1,2,0),$\overrightarrow{AP}$=(-3,0,6),
设平面PAD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{AP}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-x+2y=0}\\{-3x+6z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(2,1,1).
又平面PCD的法向量为$\overrightarrow{DE}$=(-2,2,0).
∴cos<$\overrightarrow{n}$,$\overrightarrow{DE}$>=$\frac{\overrightarrow{n}•\overrightarrow{DE}}{|\overrightarrow{n}||\overrightarrow{DE}|}$=$\frac{-2}{\sqrt{6}•2\sqrt{2}}$=-$\frac{\sqrt{3}}{6}$.
∵二面角A-PD-C为锐二面角,
∴二面角A-PD-C的余弦值为$\frac{\sqrt{3}}{6}$.

点评 本题考查了线面垂直的判定,空间向量与空间角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$表示向东走10km,$\overrightarrow{b}$表示向北走10$\sqrt{3}$km,则$\overrightarrow{a}-\overrightarrow{b}$表示(  )
A.向南偏西30°走20kmB.向北偏西30°走20km
C.向南偏东30°走20kmD.向北偏东30°走20km

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值为3,最小值为-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛掷一枚质地均匀的硬币,出现正面向上和反面向上的概率都为$\frac{1}{2}$,构造数列{an},使an=$\left\{\begin{array}{l}{1,第n次正面向上}\\{-1,第n次把反面向上}\end{array}\right.$,记Sn=a1+a2+…+an,则S2≠0且S8=2的概率为(  )
A.$\frac{43}{128}$B.$\frac{43}{64}$C.$\frac{13}{128}$D.$\frac{13}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x)则称f(x)为局部函数,已知二次函数f(x)=ax2+2x-4a(a∈R,a≠0)是定义域在R上的局部函数,则满足f(-x)=-f(x)的x值是±2
(2)若直角坐标平面内两点A、B满足条件:点A、B都在f(x)的图象上;点A、B关于原点对称,则对称点(A、B)对是函数的一个姊妹点对点对(A、B)与(B、A)可看做一个姊妹点对.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$则f(x)的姊妹点对个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是(  )
A.最大数B.最小数
C.既不最大也不最小D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角i与反射角r相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:
(1)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2))后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(2)结论:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一点P(x0,y0)处的切线l的方程为$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.记椭圆C的方程为C:$\frac{x^2}{4}$+y2=1.
①过椭圆C的右准线上任一点M向椭圆C引切线,切点分别为A,B,求证:直线lAB恒过一定点;
②设点P(x0,y0)为椭圆C上位于第一象限内的动点,F1,F2为椭圆C的左右焦点,点I为△PF1F2的内心,直线PI与x轴相交于点N,求点N横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过原点的直线l与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两支分别相交于A,B两点,F(-$\sqrt{3}$,0)是此双曲线的左焦点,若|FA|+|FB|=4,$\overrightarrow{FA}$•$\overrightarrow{FB}$=0则此双曲线的方程是(  )
A.$\frac{x^2}{2}$-y2=1B.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{8}$-$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角α终边上一点P(-4,3).
(Ⅰ)求$\frac{{cos(α-\frac{π}{2})sin(2π-α)cos(π-α)}}{{sin(\frac{π}{2}+α)}}$的值;
(Ⅱ)若β为第三象限角,且tanβ=1,求cos(2α-β)的值.

查看答案和解析>>

同步练习册答案