精英家教网 > 高中数学 > 题目详情
1.某人有4把钥匙,其中仅有1把能打开门,现随机取1把钥匙试着开门,不能打开就扔掉,则至少第二次才能打开门的概率是$\frac{3}{4}$.

分析 至少第二次才能打开门的对立事件是第一次就打开房门,第一次就打开房门的概率为:$\frac{1}{4}$,由此利用对立事件概率计算公式能求出至少第二次才能打开门的概率.

解答 解:至少第二次才能打开门的对立事件是第一次就打开房门,
第一次就打开房门的概率为:$\frac{1}{4}$,
∴至少第二次才能打开门的概率是p=1-$\frac{1}{4}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查古典概型、概率等基础知识,考查数据处理能力、运算求解能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={0,1,2},全集U={x-y|x∈A,y∈A},则∁UA={-2,-1}.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:选择题

已知,则

A.0 B. C.1 D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二文上第一次月考数学试卷(解析版) 题型:填空题

设函数,则不等式的解集为

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二文上第一次月考数学试卷(解析版) 题型:选择题

某程序的框图如图所示,执行该程序,若输入的N=5,则输出i=( )

A.9 B.8 C.7 D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\underset{lim}{n→∞}$(1+$\frac{1}{2n}$)n的值为$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)在[0,π]内的值域为[-1,$\frac{\sqrt{3}}{2}$],则ω的取值范围是(  )
A.[$\frac{3}{2}$,$\frac{5}{3}$]B.[$\frac{5}{6}$,$\frac{3}{2}$]C.[$\frac{5}{6}$,+∞)D.[$\frac{5}{6}$,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow a=(2,1),\overrightarrow b=(0,-1)$,则$2\overrightarrow b+3\overrightarrow a$=(  )
A.(-6,1)B.(6,-1)C.(6,1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.实系数一元二次方程x2+ax+b=0的一个根在(0,1)上,另一个根在(1,2)上,则$\frac{2-b}{2-a}$的取值范围是(  )
A.(0,$\frac{2}{3}$)B.(-∞,$\frac{2}{3}$)C.($\frac{2}{3}$,2)D.$(\frac{2}{3},+∞)$

查看答案和解析>>

同步练习册答案