精英家教网 > 高中数学 > 题目详情
1.已知数列{an}满足a1=1,anan+1=2n,n∈N.
(1)若函数f(x)=Asin(2x+ϕ)(A>0,0<ϕ<π)在x=$\frac{π}{6}$处取得最大值a4+1,求函数f(x)在区间$[-\frac{π}{12},\frac{π}{2}]$上的值域.
(2)求数列{an}的通项公式.

分析 (1)由anan+1=2n,求出a2,a3,a4,可得A,运用正弦函数的图象和性质,即可得到所求值域;
(2)讨论n为奇数,n为偶数,运用等比数列的通项公式,即可得到所求通项.

解答 解:(1)∵${a_n}{a_{n+1}}={2^n}$,
则${a_{n+1}}{a_{n+2}}={2^{n+1}}$,
相除$\frac{{{a_{n+2}}}}{a_n}=2$,
又a1=1,故${a_1}{a_2}={2^1}⇒{a_2}=2$,
∴a3=2,a4=4,
∴A=a4+1=5,故f(x)=5sin(2x+ϕ)
又$x=\frac{π}{6}$时,f(x)max=5,
∴$sin(\frac{π}{3}+ϕ)=1$,且0<ϕ<π解得:$ϕ=\frac{π}{6}$,
∴$f(x)=5sin(2x+\frac{π}{6})$,
而$x∈[-\frac{π}{12},\frac{π}{2}]$,故$2x+\frac{π}{6}∈[0,\frac{7π}{6}]$,
从而sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
可得:$f(x)∈[-\frac{5}{2},5]$;
(2)由(1)得:a1=1,a2=2,$\frac{{{a_{n+1}}}}{a_n}=2$,
∴当n为奇数时,${a_n}={a_1}×{2^{\frac{n-1}{2}}}={2^{\frac{n-1}{2}}}$,
当n为偶数时,${a_n}={a_2}×{2^{\frac{n-2}{2}}}={2^{\frac{n}{2}}}$,
∴数列{an}的通项公式为:an=$\left\{\begin{array}{l}{{2}^{\frac{n-1}{2},n为奇数}}\\{{2}^{\frac{n}{2}},n为偶数}\end{array}\right.$.

点评 本题考查正弦函数的图象和性质,注意运用数列的递推式,考查数列的通项公式的求法,注意运用分类讨论思想方法和等比数列的通项公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.右面是一个算法的程序框图,当输入n的值为12时,则输出的结果为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“A组”,否则为“B组”,调查结果如下:
A组B组合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“A组”用户与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;
(3)从(2)中抽取的5人中再随机抽取2人赠送200元的护肤品套装,求这2人中至少有1人在“A组”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$表示的点集M,不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{y≥2{x}^{2}}\end{array}\right.$表示的点集记为N,在M中任取一点P,则P∈N的概率为(  )
A.$\frac{5}{32}$B.$\frac{9}{32}$C.$\frac{9}{16}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线a,b,平面α,满足a⊥α,且b∥α,有下列四个命题:
①对任意直线c?α,有c⊥a;
②存在直线c?α,使c⊥b且c⊥a;
③对满足a?β的任意平面β,有β⊥α;
④存在平面β⊥α,使b⊥β.
其中正确的命题有①②③④(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3-$\frac{2}{x+1}$,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;
(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过点P(a,-2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).
(Ⅰ) 证明:x1x2+y1y2为定值;
(Ⅱ) 记△PAB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的通项公式为${a_n}={(-1)^{n+1}}•{n^2}$,其前n项和为Sn
(1)求S1,S2,S3,S4,并猜想Sn的值;
(2)用数学归纳法证明(1)中所猜想的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知菱形ABCD的边长为6,∠BAD=60°,对角线AC、BD相交于O,将菱形ABCD沿对角线AC折起,使BD=3$\sqrt{2}$,得到三棱锥B-ACD.

(1)若M是BC的中点,求证:直线OM∥平面ABD;
(2)求三棱锥B-ACD的体积;
(3)若N是BD上的动点,求当直线CN与平面OBD所成角最大时,二面角N-AC-B的平面角的余弦值.

查看答案和解析>>

同步练习册答案