精英家教网 > 高中数学 > 题目详情
如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为平行四边形,其中AB=, BD=BC=1, AA1=2,E为DC的中点,F是棱DD1上的动点.

(1)求异面直线AD1与BE所成角的正切值;
(2)当DF为何值时,EF与BC1所成的角为90°?
(1)3;(2)

试题分析:(1)求异面直线所成的角,应该先找后求,异面直线所成的角是指将两条异面直线经过平行移动后,移到相交位置时,所成的锐角或直角,故平移直线是找异面直线所成角的关键,通常平移办法有中位线平移、平行四边形平移、比例线段平移,找到所求的角后,然后借助平面图形去求;(2)直线和直线 垂直,通常采取的办法是,先证明线面垂直,进而证明线线 垂直,而证明线面垂直,又需要两个线线垂直关系,所以需从图里尽可能挖掘隐藏的垂直关系.
试题解析:(1)连接1.在直四棱柱ABCD-A1B1C1D1中,∵,,∴四边形是平行四边形,所以,∴就是异面直线AD1与BE所成角或者是其补角,因为是边的中点,所以,又在直四棱柱ABCD-A1B1C1D1中,,∴,所以,在Rt△BEC1中,BE=,EC1,所以tan ∠EBC1=3;
(2)当DF=时,EF与BC1所成的角为9 0°,由(1)知,,∴,∴当时,,从而,在矩形中,又DE=EC=,CC1=AA1=2.
当DF=时,因为,  所以△DEF∽△CC1E,所以∠DEF+∠CEC1=90°,
所以∠FEC1=90°,即FE⊥EC1.又EB∩EC1=E,所以EF⊥平面BEC1
所以EF⊥BC1,即EF与BC1所成的角等于90°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,且中点.

(I)求证:平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,D、E分别为、AD的中点,F为上的点,且

(I)证明:EF∥平面ABC;
(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.

(Ⅰ)证明EF//平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有(  )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,给出下列4个命题:
①若          ②若
③若         ④若
其中真命题的序号为(     )
A.①②B.②③C.③④D.①④

查看答案和解析>>

同步练习册答案