精英家教网 > 高中数学 > 题目详情
9.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为$\frac{\sqrt{3}+1}{2}$.

分析 求得圆O的方程,联立双曲线的方程,求得P的横坐标,再由双曲线的定义,和直角三角形的勾股定理,可得c,b,化简整理可得所求横坐标的值.

解答 解:坐标原点O为圆心,c为半径的圆的方程为x2+y2=c2
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}={c}^{2}}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得x2=$\frac{{c}^{2}+{b}^{2}}{{b}^{2}+1}$,
由|PF1|=c+2,
由双曲线的定义可得|PF2|=|PF1|-2a=c+2-2=c,
在直角三角形PF1F2中,可得c2+(c+2)2=4c2
解得c=1+$\sqrt{3}$,
由c2=a2+b2=1+b2,可得b2=3+2$\sqrt{3}$,
可得P的横坐标为$\sqrt{\frac{7+4\sqrt{3}}{4+2\sqrt{3}}}$=$\frac{1+\sqrt{3}}{2}$.
故答案为:$\frac{{\sqrt{3}+1}}{2}$.

点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及勾股定理的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数fn(x)=$\frac{sinnx}{sinx}$(n∈N*),关于此函数的说法正确的序号是①②④
①fn(x)(n∈N*)为周期函数;②fn(x)(n∈N*)有对称轴;③($\frac{π}{2}$,0)为fn(x)(n∈N*)的对称中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程与圆(x-$\sqrt{3}$)2+(y-1)2=1相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{6}}{6}$x,则此双曲线的离心率为(  )
A.$\frac{\sqrt{42}}{6}$B.$\frac{7}{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线x2=y-1只有一个公共点,则双曲线的离心率为(  )
A.5B.$\frac{5}{4}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.△ABC中,∠A=45°,a=$\sqrt{14-\sqrt{2}}$,且S△ABC=$\frac{\sqrt{2}}{4}$,b>c,则b=2+$\sqrt{3}$,c=2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要得到函数y=cos(2x-$\frac{π}{3}$)图象,只需将函数y=sin($\frac{π}{2}$+2x)图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{7}{12}$D.$\frac{11}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线${x^2}-\frac{y^2}{3}=1$的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步练习册答案