动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求;
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,,计算;
(3)曲线上的两个定点、,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;
科目:高中数学 来源: 题型:解答题
已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为、 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m,m0),点P的轨迹加上M、N两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求在y轴上的截距的变化范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,
轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设与轴的交点为,过坐标原点的直线
与相交于两点,直线分别与相交于.
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆的右焦点,点、分别是轴、
轴上的动点,且满足.若点满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交
于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com