精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{8}{{x}^{2}-4x+5}$,则下列说法正确的是(  )
A.最小值为0,最大值为8B.不存在最小值,最大值为8
C.最小值为0.不存在最大值D.不存在最大值,也不存在最小值

分析 化简函数,可得函数不存在最小值,最大值为8.

解答 解:函数f(x)=$\frac{8}{{x}^{2}-4x+5}$=$\frac{8}{(x-2)^{2}+1}$,
∵(x-2)2+1≥1,
∴0<$\frac{8}{(x-2)^{2}+1}$≤8,
∴函数f(x)=$\frac{8}{{x}^{2}-4x+5}$不存在最小值,最大值为8,
故选:B.

点评 本题考查函数的最值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,a=1,b=$\sqrt{2}$,c=$\sqrt{5}$,则角C等于(  )
A.45°B.45°或135°C.135°D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若1og${\;}_{\frac{1}{2}}$x=3.则x3=$\frac{1}{512}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若lg8+3$\sqrt{l{g}^{2}6-2lg6+1}$的值为(  )
A.lg2B.3(1-lg3)C.lg5-1D.-lg5-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$lo{g}_{(\sqrt{n+1}-\sqrt{n})}$($\sqrt{n+1}$+$\sqrt{n}$)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求解关于x的不等式x2+2m<(m+2)x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=ax2+(a-1)x+$\frac{1}{4}$的图象恒在x轴上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.${(1-x)^3}{(1-\sqrt{x})^4}$的展开式中x2的系数是(  )
A.-6B.-8C.-12D.-14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在二项式(1-2x)9的展开式中,x3的系数等于-672.(用数字作答)

查看答案和解析>>

同步练习册答案