精英家教网 > 高中数学 > 题目详情
1.${(1-x)^3}{(1-\sqrt{x})^4}$的展开式中x2的系数是(  )
A.-6B.-8C.-12D.-14

分析 含x2的项有(1-x)3的二次项乘以(1-$\sqrt{x}$)4中的常数项,(1-x)3的一次项乘以(1-$\sqrt{x}$)4中的一次项,还有(1-x)3的常数项乘以(1-$\sqrt{x}$)4中的二次项,可得展开式中x2的系数.

解答 解:利用二项式定理,含x2的项有(1-x)3的二次项乘以(1-$\sqrt{x}$)4中的常数项,(1-x)3的一次项乘以(1-$\sqrt{x}$)4中的一次项,还有(1-x)3的常数项乘以(1-$\sqrt{x}$)4中的二次项,
故展开式中x2的系数是C32×1+C31×(-1)×C42+1×C44=-14,
故选:D.

点评 本题考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知2x=3,log4$\frac{2}{3}$=y,则x+2y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{8}{{x}^{2}-4x+5}$,则下列说法正确的是(  )
A.最小值为0,最大值为8B.不存在最小值,最大值为8
C.最小值为0.不存在最大值D.不存在最大值,也不存在最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.y=x${\;}^{\frac{n}{m}}$(m为不等于0的偶数,n为奇数.且m•n<0),那么它的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算下列各式:
(1)($\frac{36}{49}$)${\;}^{\frac{3}{2}}$;
(2)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$;
(3)a${\;}^{\frac{1}{2}}$a${\;}^{\frac{1}{4}}$a${\;}^{-\frac{1}{8}}$;
(4)2x${\;}^{-\frac{1}{3}}$($\frac{1}{2}$x${\;}^{\frac{1}{3}}$-2x${\;}^{-\frac{2}{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x=$\frac{π}{12}$,则cosx-sinx=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{3}{4}$x2-3x+n(n∈R),若f(x)的定义域和值域均为[2,m].
(1)求m,n的值;
(2)若关于x的不等式组$\left\{\begin{array}{l}{\frac{3}{4}{x}^{2}-3x+4≥a}\\{\frac{3}{4}{x}^{2}-3x+4≤b}\end{array}\right.$的解集为[a,b],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-$\overrightarrow{b}$.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若$\overrightarrow{c}$⊥$\overrightarrow{d}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=(k-2)x2+(k-3)x+3是偶函数,则实数k的值为3.

查看答案和解析>>

同步练习册答案