精英家教网 > 高中数学 > 题目详情
17.对正整数m的三次幂可用奇数进行以下方式的“分拆”:13{1,23$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$},…以此类推,若m3的“分拆”中含有奇数2015,则m的值为45.

分析 由题意知,n的三次方就是n个连续奇数相加,且从2开始,这些三次方的分解正好是从奇数3开始连续出现,由此规律即可找出m3的“分裂数”中有一个是2015时,m的值.

解答 解:由题意,从23到m3,正好用去从3开始的连续奇数共2+3+4+…+m=$\frac{(m+2)(m-1)}{2}$个,
2015是从3开始的第1007个奇数
当m=44时,从23到443,用去从3开始的连续奇数共$\frac{46×43}{2}$=989个
当m=45时,从23到453,用去从3开始的连续奇数共$\frac{47×44}{2}$=1034个
故m=45.
故答案为:45.

点评 本题考查归纳推理,求解的关键是根据归纳推理的原理归纳出结论,其中分析出分解式中项数及每个式子中各数据之间的变化规律是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}为等差数列,数列{bn}为等比数列,a1=b1=1,且数列{an•bn}的前n项和Sn=k-$\frac{n+2}{{2}^{n-1}}$(k是常数,n∈N*).
(1)求k值,并求数列{an}与数列{bn}的通项公式;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+1|+|x-3|.
(1)请写出函数f(x)在每段区间上的解析式,并在图上的直角坐标系中作出函数f(x)的图象;
(2)若不等式|x+1|+|x-3|≥a+$\frac{1}{a}$对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-1|+|x+1|(x∈R)
(1)将函数解析式写成分段函数的形式,
(2)然后画出函数图象,并写出函数的值域;利用图象写出不等式f(x)>x+2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设m,n∈(0,+∞),若直线(m+2)x+(n+2)y-4=0与圆(x-1)2+(y-1)2=1相切,则m+n的最小值是(  )
A.4+4$\sqrt{2}$B.2+2$\sqrt{2}$C.4+$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.测量某物体的重量n次,得到如下数据:a1,a2,…,an,其中a1≤a2≤…≤an,若用a表示该物体重量的估计值,使a与每一个数据差的绝对值的和最小.
①若n=2,则a的一个可能值是a1,或a2,或$\frac{{{a_1}+{a_2}}}{2}$(或是[a1,a2]之间任一数);
②若n=9,则a等于a5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{b}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,-1),则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.8B.5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题错误的是(  )
A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β

查看答案和解析>>

同步练习册答案