精英家教网 > 高中数学 > 题目详情
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,该双曲线的一个焦点在直线l上,则双曲线的方程$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

分析 根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.

解答 解:由题意得,$\left\{\begin{array}{l}{\frac{b}{a}=2}\\{-2c+10=0}\\{{c}^{2}={a}^{2}+{b}^{2}}\end{array}\right.$,
解得a2=5,b2=20,
∴双曲线的方程是$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$,
故答案为:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

点评 本题考查双曲线的标准方程,以及简单几何性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=(-x2+ax)ex,(x∈R,e为自然对数的底数)
(1)当a=2时,求函数f(x)的单调递增区间.
(2)函数f(x)是否为R上的单调函数,若是,求出a的取值范围;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:y=-$\frac{1}{3}$ax-$\frac{1}{3}$,l2:y=-$\frac{2}{a+1}$x-$\frac{1}{a+1}$,若l1∥l2,则实数a的值是(  )
A.a=-3或a=2B.a=-3C.a=-2D.a=3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个由圆、三角形、矩形组成的组合图,现用红黄两种颜色为其涂色,每个图形只涂一色,则三个颜色不全相同的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=$\frac{2π}{3}$.设线段AB的中点M在l上的投影为N,则$\frac{|MN|}{|AB|}$的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于函数f(x)=ax3+3x2+(a2+1)x+1,(a≠0,a∈R),甲、乙、丙三位同学的描述有且只有1人是错误的.
甲:函数y=f(x)在区间(-1,0)存在唯一极值点;
乙:对?x1∈R,?x2∈R,使得f(x1)+f(a-x2)=1;
丙:函数y=f(x)的图象与x轴、y轴以及直线x=1围成图形的面积不小于$\frac{11}{4}$.
则符合条件的实数a的取值范围为$(-∞,\frac{{-3-\sqrt{29}}}{2}]∪(-1,2)∪[\frac{{-3+\sqrt{29}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.7,0.8,0.9,则三人至少有一人达标的概率是0.994.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题:
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数f(x)=sin|x|是最小正周期为π的周期函数;
③设θ为第二象限角,则tanθ>cos$\frac{θ}{2}$,且sin$\frac{θ}{2}$>cos$\frac{θ}{2}$
④函数y=cos2x+sinx的最小值为-1
其中真命题的序号是①④((写出所有正确命题的编号))

查看答案和解析>>

同步练习册答案