分析 由题意可得当x<0时,f(x)=-x2+4x,不等式xf(x)>0,即 $\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$①,$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$ ②.分别求得①、②的解集,再取并集,即得所求.
解答
解:f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,
故当x<0时,f(x)=-x2-4x,故函数f(x)的图象如图:
不等式xf(x)>0,即 $\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$①,$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$ ②.
解①可得x>4,解②可得x<-4,
故不等式的解集为(-∞,-4)∪(4,+∞),
故答案为:(-∞,-4)∪(4,+∞).
点评 本题主要考查函数的奇偶性的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com