精英家教网 > 高中数学 > 题目详情
10.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,一条渐近线的倾斜角为30°,则该双曲线的标准方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$.

分析 求得抛物线的焦点,设双曲线的方程为$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a,b>0),求得渐近线方程和a,b,c的关系,解方程即可得到所求.

解答 解:抛物线x2=24y的焦点为(0,6),
设双曲线的方程为$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a,b>0),
即有c=6,即a2+b2=36,
渐近线方程为y=±$\frac{a}{b}$x,
由题意可得tan30°=$\frac{a}{b}$,即为b=$\sqrt{3}$a,
解得a=3,b=3$\sqrt{3}$,
即有双曲线的标准方程为:$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$.
故答案为:$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$.

点评 本题考查抛物线的焦点的运用,考查双曲线的方程的求法和渐近线方程的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,a2=-$\frac{1}{25}$,a5=-5判断-125是否为数列中的项,如果是,请指出是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上的点G(1,m)到焦点的距离为3,椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为$\frac{1}{2}$.
(1)求抛物线C1和椭圆C2的方程;
(2)已知直线l:y=kx-4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=log2(4-x2)},B={y|y=2x+1},则A∩B=(  )
A.B.(1,3)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x+2y-4<0\\ x>0\\ y>0\end{array}\right.$,则$z=\frac{y+2}{x-1}$的取值范围为(  )
A.$(-∞,-4)∪(\frac{2}{3},+∞)$B.$(-∞,-2)∪(\frac{2}{3},+∞)$C.$(-2,\frac{2}{3})$D.$(-4,\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?m∈R,使得函数f(x)=x2+(m-1)x2-2是奇函数,命题q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$$∥\overrightarrow{b}$”的充要条件,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是圆P:(x+5)2+y2=36上一动点,点Q的坐标为(5,0),若线段MQ的垂直平分线交直线PM于点N,则点N的轨迹方程为(  )
A.$\frac{x^2}{25}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{9}=1$D.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数i-i2在复平面内表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的奇函数f(x)满足f(x+4)=f(x)恒成立,且f(1)=1,则f(2016)+f(2017)+f(2018)的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案