·ÖÎö £¨1£©ÓÉÅ×ÎïÏßÉϵĵãG£¨1£¬m£©µ½½¹µãµÄ¾àÀëΪ3£¬ÇóÅ×ÎïÏßC1£¬ÍÖÔ²C2µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ£¬ÇÒÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇóÍÖÔ²C2µÄ·½³Ì£®
£¨2£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°Åбðʽ´óÓÚ0£¬Í¨¹ýÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÍƳö$\overrightarrow{OA}$•$\overrightarrow{OB}$£¾0£¬È»ºóÇó½âkµÄ·¶Î§¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª$1+\frac{p}{2}=3$£¬½âµÃp=4£¬ËùÒÔÅ×ÎïÏßC1µÄ·½³ÌΪ£ºy2=8x£®
¡àÅ×ÎïÏßC1µÄ½¹µãF£¨2£¬0£©£¬
¡ßÍÖÔ²C2µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ£¬
¡àÍÖÔ²C2°ë½¹¾àc=2£¬m2-n2=c2=4£®
¡ßÍÖÔ²C2µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬¡à$\frac{2}{m}=\frac{1}{2}$£¬½âµÃm=4£¬$n=2\sqrt{3}$£¬
¡àÍÖÔ²C2µÄ·½³ÌΪ$\frac{x^2}{16}+\frac{y^2}{12}=1$£®
£¨2£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx-4\\ \frac{x^2}{16}+\frac{y^2}{12}=1\end{array}\right.$µÃ£¨4k2+3£©x2-32kx+16=0£¬
¡à${x_1}+{x_2}=\frac{32k}{{4{k^2}+3}}$£¬${x_1}{x_2}=\frac{16}{{4{k^2}+3}}$£¬
ÓÉ¡÷£¾0£¬¼´£¨-32k2£©-4¡Á16£¨4k2+3£©£¾0£¬½âµÃ$k£¾\frac{1}{2}$»ò$k£¼-\frac{1}{2}$£®¢Ù
¡ßÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬Ôò$\overrightarrow{OA}•\overrightarrow{OB}£¾0$£¬
¡à$\overrightarrow{OA}•\overrightarrow{OB}=£¨{x_1}£¬{y_1}£©•£¨{x_2}£¬{y_2}£©$=x1x2+y1y2=x1x2+£¨kx1-4£©£¨kx2-4£©=£¨k2+1£©x1x2-4k£¨x1+x2£©+16=$£¨{k^2}+1£©•\frac{16}{{4{k^2}+3}}-4k•\frac{32k}{{4{k^2}+3}}+16$=$\frac{{16£¨4-3{k^2}£©}}{{4{k^2}+3}}£¾0$£¬
½âµÃ$-\frac{{2\sqrt{3}}}{3}£¼k£¼\frac{{2\sqrt{3}}}{3}$£®¢Ú
ÓÉ¢Ù¢Ú½âµÃʵÊýkµÄ·¶Î§ÊÇ$-\frac{{2\sqrt{3}}}{3}£¼k£¼-\frac{1}{2}$»ò$\frac{1}{2}£¼k£¼\frac{{2\sqrt{3}}}{3}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ô²×¶ÇúÏßµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | k£¾0»òk¡Ü-9 | B£® | k¡Ý1 | C£® | -9¡Ük¡Ü1 | D£® | 0¡Ük¡Ü1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{5\sqrt{3}}{2}$ | B£® | $\sqrt{3}$ | C£® | 2$\sqrt{3}$ | D£® | $\frac{3\sqrt{3}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x=1£¬y=1 | B£® | £¨1£¬1£© | C£® | {1£¬1} | D£® | {£¨1£¬1£©} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬0£©¡È£¨1£¬2£© | B£® | [0£¬+¡Þ£© | C£® | £¨-¡Þ£¬1]¡È[2£¬+¡Þ£© | D£® | [0£¬1]¡È[2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?x¡ÊR£¬3x2+1¡Ü0 | B£® | ?x¡ÊR£¬3x2+1¡Ü0 | C£® | ?x¡ÊR£¬3x2+1£¼0 | D£® | ?x¡ÊR£¬3x2+1£¼0 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com