精英家教网 > 高中数学 > 题目详情
2.已知点P为△ABC所在的平面内一点,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$=-1,则△ABC的面积为(  )
A.$\frac{5\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3\sqrt{3}}{2}$

分析 由$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$得到P为重心,由$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,得到P又为垂心,得到三角形为等边三角形,根据$\overrightarrow{PA}$•$\overrightarrow{PB}$=-1以及向量的数量积公式和解直角三角形得到边长为$\sqrt{6}$,即可求出三角形的面积.

解答 解:∵$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则$\overrightarrow{PA}$+$\overrightarrow{PB}$=-$\overrightarrow{PC}$,
由平行四边形法则,得CP延长交AB于中点,
同理,BP延长交AC于中点,∴P为重心;
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,∴$\overrightarrow{PB}$($\overrightarrow{PA}$-$\overrightarrow{PC}$)=0,
即PB⊥AC,同理PC⊥AB,∴P又为垂心,
∴三角形ABC为等边三角形,
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=-1,
∴|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|cos120°=-1,
∴|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=$\sqrt{2}$,
∴|AB|=2|AP|cos30°=$\sqrt{6}$
∴S△ABC=$\frac{\sqrt{3}}{4}$×($\sqrt{6}$)2=$\frac{3\sqrt{3}}{2}$,
故选:D.

点评 本题考查两向量的数量积的运算,以及两向量的和、垂直的条件,考查三角形的重心和垂心,考查基本的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱ABC-A1B1C1中,D是AB的中点,且AA1=AC=3,BC1=AB=5.
(1)求证:AC1∥平面CDB1
(2)求证:BC⊥AC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x+2|+|x-2|,x∈R.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的方程f(x)=a|x-1|恰有两个不同的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)是奇函数,且x>0时,f(x)=-x${\;}^{\frac{1}{2}}$,则当x<0时,f(x)的解析式是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=(-x)${\;}^{\frac{1}{2}}$C.f(x)=-(-x)${\;}^{\frac{1}{2}}$D.f(x)=-x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要得到y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin(2x-$\frac{2π}{3}$)的图象(  )
A.向左平移$\frac{2π}{3}$个单位B.向右平移$\frac{2π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上的点G(1,m)到焦点的距离为3,椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为$\frac{1}{2}$.
(1)求抛物线C1和椭圆C2的方程;
(2)已知直线l:y=kx-4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=f(x)+cosx在[-$\frac{π}{4},\frac{3π}{4}$]上单调递减,则f(x)可以是(  )
A.1B.-sinxC.cosxD.sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x+2y-4<0\\ x>0\\ y>0\end{array}\right.$,则$z=\frac{y+2}{x-1}$的取值范围为(  )
A.$(-∞,-4)∪(\frac{2}{3},+∞)$B.$(-∞,-2)∪(\frac{2}{3},+∞)$C.$(-2,\frac{2}{3})$D.$(-4,\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,a2+a4=4,a3+a5=8,则a5+a7=(  )
A.32B.16C.64D.128

查看答案和解析>>

同步练习册答案