分析 (Ⅰ)根据绝对值的意义,求得不等式f(x)≤6的解集.
(Ⅱ)函数f(x)的图象(图中红色部分)与直线 y=a|x-1|有2个不同的交点,数形结合可得a的范围.
解答
解:(Ⅰ)函数f(x)=|x+2|+|x-2|表示数轴上的x
对应点到-2、2对应点的距离之和,
而3和-3对应点到-2、2对应点的距离之和正好等于6,
故不等式f(x)≤6的解集为 {x|-3≤x≤3 }.
(Ⅱ)∵f(x)=|x+2|+|x-2|=$\left\{\begin{array}{l}{-2x,x<-2}\\{4,-2≤x≤2}\\{2x,x>2}\end{array}\right.$,
∴f(x)≥4,
若关于x的方程f(x)=a|x-1|恰有两个不同的实数根,
则函数f(x)的图象与直线 y=a|x-1|(图中红色部分)
有2个不同的交点,如图所示:
由于A(-2,4)、B(2,4)、C(1,0),
∴-2<-a<KCA,或 a≥KCB,
即-2<-a<-$\frac{4}{3}$,或a≥4,
求得 $\frac{4}{3}$<a<2,或a≥4.
点评 本题主要绝对值的意义,方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | M-(M-N)=N | B. | (M-N)+(N-M)=∅ | C. | (M+N)-M=N | D. | (M-N)∩(N-M)=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>0或k≤-9 | B. | k≥1 | C. | -9≤k≤1 | D. | 0≤k≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,使得lnx0+x03+2x02+4=0 | B. | ?x0∈R,使得ex0+x03+2x02+4≠0 | ||
| C. | ?x∈R,使得ex+x3+2x2+4=0 | D. | ?x0∈R,使得ex0+x03+2x02+4=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com