精英家教网 > 高中数学 > 题目详情
12.△ABC所在平面内存在一点M,使得|$\overrightarrow{MA}$|2+|$\overrightarrow{MB}$|2+|$\overrightarrow{MC}$|2的值最小,则点M一定是△ABC的(  )
A.内心B.外心C.重心D.垂心

分析 设点G是△ABC的重心,利用$\overrightarrow{MA}$=$\overrightarrow{MG}$+$\overrightarrow{GA}$,$\overrightarrow{MB}$=$\overrightarrow{MG}$+$\overrightarrow{GB}$,$\overrightarrow{MC}$=$\overrightarrow{MG}$+$\overrightarrow{GC}$,求出${\overrightarrow{MA}}^{2}$+${\overrightarrow{MB}}^{2}$+${\overrightarrow{MC}}^{2}$的表达式的最小值,得出点M与点G重合.

解答 解:设G是△ABC的重心,则$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,
∵$\overrightarrow{MA}$=$\overrightarrow{MG}$+$\overrightarrow{GA}$,$\overrightarrow{MB}$=$\overrightarrow{MG}$+$\overrightarrow{GB}$,$\overrightarrow{MC}$=$\overrightarrow{MG}$+$\overrightarrow{GC}$,
∴${\overrightarrow{MA}}^{2}$+${\overrightarrow{MB}}^{2}$+${\overrightarrow{MC}}^{2}$=${\overrightarrow{GA}}^{2}$+${\overrightarrow{GB}}^{2}$+${\overrightarrow{GC}}^{2}$+3${\overrightarrow{MG}}^{2}$+2$\overrightarrow{MG}$•($\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$)
=${\overrightarrow{GA}}^{2}$+${\overrightarrow{GB}}^{2}$+${\overrightarrow{GC}}^{2}$+3${\overrightarrow{MG}}^{2}$;
∴${\overrightarrow{MA}}^{2}$+${\overrightarrow{MB}}^{2}$+${\overrightarrow{MC}}^{2}$≥${\overrightarrow{GA}}^{2}$+${\overrightarrow{GB}}^{2}$+${\overrightarrow{GC}}^{2}$,
当且仅当$\overrightarrow{MG}$=$\overrightarrow{0}$时“=”成立,
即点M与点G重合时.
∴M为△ABC的重心.
故选:C.

点评 本题考查了平面向量的应用问题以及三角形的重心公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.高二年级某三个班级参加“黄冈中学第一届数学竞赛”分别有1,2,3名同学获奖.并站成一排合影留念,若相同班级的同学不能相邻,则不同的排法种数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,P是以F1F为直径的圆与该椭圆的一个交点,且∠PF1F2=2∠PF2F1,则这个椭圆的离心率是(  )
A.$\sqrt{3}$-1B.2-$\sqrt{3}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差为2,前n项和为Sn,且S1、S2、S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$离心率e=$\frac{\sqrt{2}}{2}$,短轴长为2$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一位测量爱好者在与金茂大厦顶部同一水平线上的B处测得金茂大厦顶部A的仰角为15.66°,再向金茂大厦前进500米到C处,测得金茂大厦顶部A的仰角22.81°,他能算出金茂大厦的高度呢?若能算出,请计算其高度?(精确到1米)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若tanα=2,求$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.四棱锥S-ABCD的底面ABCD是正方形,AC与BD相交于点O,且SO⊥平面ABCD,若四棱锥S-ABCD的体积为12,底面对角线的长为2$\sqrt{8}$,则侧面与底面所成的二面角等于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列a-1,a2-2,a3-3…an-n,求Sn

查看答案和解析>>

同步练习册答案