精英家教网 > 高中数学 > 题目详情
9.直线2x+3y-6=0分别交x轴和y轴于A,B两点,P是直线y=-x上的一点,要使|PA|+|PB|最小,则点P的坐标是(  )
A.(-1,1)B.(0,0)C.(1,-1)D.($\frac{1}{2}$,-$\frac{1}{2}$)

分析 由题意,A(3,0),B(0,2),求得点B(0,2)关于直线y=-x的对称点B′的坐标,用两点式求得AB′的方程,再由直线AB′的方程和直线y=-x的方程联立方程组,求得点P的坐标

解答 解:由题意,A(3,0),B(0,2)
设点B(0,2)关于直线y=-x的对称点B′(m,n),
则由$\left\{\begin{array}{l}{\frac{n-2}{m}•(-1)=-1}\\{\frac{2+n}{2}=-\frac{m}{2}}\end{array}\right.$,求得$\left\{\begin{array}{l}{m=-2}\\{n=0}\end{array}\right.$,可得B′(-2,0),
∴AB′的直线方程为:y=0
∴联立方程可得:$\left\{\begin{array}{l}{y=0}\\{y=-x}\end{array}\right.$,求得x=y=0
∴点P的坐标为(0,0).
故选B.

点评 本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,求两条直线的交点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD的底面是菱形,PA⊥平面ABCD,AC=BC,E,F分别是BC,PC的中点.
(1)证明:平面AEF⊥平面PAD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三棱锥A-BCD中,△ACD为等边三角形,且平面ACD⊥平面BCD,BD⊥CD,BD=CD=2,则三棱锥A-BCD外接球的表面积为(  )
A.B.$\frac{20}{3}$πC.D.$\frac{28}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x2+ax-2a-3)•e3-x(a∈R);
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+$\frac{25}{4}$)ex(a>0),若存在(a>0),x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某地区3月1日至30日的天气情况及晚间空间温度统计如表,比如,根据表中数据可知3月1日无雨,且当日晚间空间相对温度等级为C,若气象工作者根据某天晚间的相对温度等级预报第二天有雨的概率,则3月31日有雨的概率为$\frac{3}{5}$.
日期 1234 56789101112131415
 天气    雨雨  雨    雨  雨  雨 
 温度等级 CDCABCCADBBCACA
 日期161718192021222324252627282930
 天气 雨    雨   雨 雨   雨   
 温度等级 DCAADDDBBCDCDDB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=3-2asinx-cos2x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.由曲线y2=x,y=x3所围成的图形的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=cos($\frac{π}{3}$-2x)的单调增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A、B两个盒子中都放有4个大小相同的小球,其中A盒子中放有1个红球,3个黑球;B盒子中放有2个红球,2个黑球.
(1)若甲从A盒子中任取一球、乙从B盒子中任取一球,求甲、乙两人所取球的颜色不同的概率;
(2)若甲每次从A盒子中任取两球,记下颜色后放回,抽取两次;乙每次从B盒子中任取两球,记下颜色后放回,抽取两次.在四次取球的结果中,记两球颜色相同的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案