精英家教网 > 高中数学 > 题目详情
19.已知A、B两个盒子中都放有4个大小相同的小球,其中A盒子中放有1个红球,3个黑球;B盒子中放有2个红球,2个黑球.
(1)若甲从A盒子中任取一球、乙从B盒子中任取一球,求甲、乙两人所取球的颜色不同的概率;
(2)若甲每次从A盒子中任取两球,记下颜色后放回,抽取两次;乙每次从B盒子中任取两球,记下颜色后放回,抽取两次.在四次取球的结果中,记两球颜色相同的次数为X,求X的分布列和数学期望.

分析 (1)设事件A为“甲、乙两人所取球的颜色不同”,由此利用对立事件能求出甲、乙两人所取球的颜色不同的概率.
(2)依题意X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.

解答 解:(1)设事件A为“甲、乙两人所取球的颜色不同”,
则P(A)=1-$\frac{1×2+3×2}{4×4}$=$\frac{1}{2}$.
(2)依题意X的可能取值为0,1,2,3,4,
甲每次所取的两球颜色相同的概率为$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}$=$\frac{1}{2}$,
乙每次所取的两球颜色相同的概率为$\frac{{C}_{2}^{2}+{C}_{2}^{2}}{{C}_{4}^{2}}=\frac{1}{3}$,
P(X=0)=$\frac{1}{2}×\frac{1}{2}×\frac{2}{3}×\frac{2}{3}$=$\frac{4}{36}$,
P(X=1)=${C}_{2}^{1}(\frac{1}{2})×\frac{1}{2}×\frac{2}{3}×\frac{2}{3}$+${C}_{2}^{1}(\frac{2}{3})×\frac{1}{3}×\frac{1}{2}×\frac{1}{2}$=$\frac{12}{36}$,
P(X=2)=$\frac{1}{2}×\frac{1}{2}×\frac{1}{3}×\frac{1}{3}$+$\frac{2}{3}×\frac{2}{3}×\frac{1}{2}×\frac{1}{2}$+${C}_{2}^{1}×$$\frac{1}{2}×\frac{1}{2}×{C}_{2}^{1}×\frac{2}{3}$×$\frac{1}{3}$=$\frac{13}{36}$,
P(X=3)=$\frac{1}{2}×\frac{1}{2}×{C}_{2}^{1}×\frac{2}{3}×\frac{1}{3}$+$\frac{1}{3}×\frac{1}{3}×{C}_{2}^{1}×\frac{1}{2}×\frac{1}{2}$=$\frac{6}{36}$,
P(X=4)=$\frac{1}{2}×\frac{1}{2}×\frac{1}{3}×\frac{1}{3}$=$\frac{1}{36}$,
∴X的分布列为:

 X 0 2 3 4
 P $\frac{4}{36}$ $\frac{12}{36}$ $\frac{13}{36}$ $\frac{6}{36}$ $\frac{1}{36}$
EX=$0×\frac{4}{36}+1×\frac{12}{36}+2×\frac{13}{36}+3×\frac{6}{36}+4×\frac{1}{36}$=$\frac{5}{3}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.直线2x+3y-6=0分别交x轴和y轴于A,B两点,P是直线y=-x上的一点,要使|PA|+|PB|最小,则点P的坐标是(  )
A.(-1,1)B.(0,0)C.(1,-1)D.($\frac{1}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设(1-$\frac{1}{2}$x)n=a0+a1x+a2x2+${a_3}{x^3}$+…+${a_n}{x^n}$,若|a0|,|a1|,|a2|成等差数列.
(1)求(1-$\frac{1}{2}$x)n展开式的中间项;
(2)求(1-$\frac{1}{2}$x)n展开式中所有含x奇次幂的系数和;
(3)求a1+2a2+3a3+…+nan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an}满足:a1=$\frac{3}{7}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,{a}_{n}≥\frac{1}{2}}\end{array}\right.$(n∈N),则a2016=(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{5}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{|x|(x-1)}$的定义域为(  )
A.{x|x≥1}B.{x|x≥1或x=0}C.{x|x≥0}D.{x|x=0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的公比为3,且a1+a3+a5=9,则$log_{\frac{1}{3}}}$(a5+a7+a9)=(  )
A.$\frac{1}{6}$B.$-\frac{1}{6}$C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=arctan$\frac{2x}{1+{x}^{2}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(1-2x)2016=a0+a1(x-2)+a2(x-2)2+…+a2015(x-2)2015+a2016(x-2)2016(x∈R),则a1-2a2+3a3-4a4+…+2015a2015-2016a2016=(  )
A.1008B.2016C.4032D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若A=135°,B=30°,a=$\sqrt{2}$,则b等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案