精英家教网 > 高中数学 > 题目详情
4.已知等比数列{an}的公比为3,且a1+a3+a5=9,则$log_{\frac{1}{3}}}$(a5+a7+a9)=(  )
A.$\frac{1}{6}$B.$-\frac{1}{6}$C.6D.-6

分析 根据等比数列的性质结合对数的运算法则进行求解即可.

解答 解:∵等比数列{an}的公比为3,且a1+a3+a5=9,
∴a5+a7+a9=(a1+a3+a5)q4=9×34=36
则$log_{\frac{1}{3}}}$(a5+a7+a9)=$log_{\frac{1}{3}}}$36=-log336=-6,
故选:D.

点评 本题主要考查对数值的计算,根据等比数列的性质结合对数的运算法则是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=3-2asinx-cos2x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=${∫}_{1}^{e}$$\frac{1}{x}$dx,b=${∫}_{0}^{1}$cosxdx,则(  )
A.a>bB.a<bC.a+b=1D.a+b<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知无穷数列{an}满足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均为非负实数且不同时为0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求数列{an}的前n项和Sn
(3)若a1=2,q=1,求证:当p∈(${\frac{1}{2}$,$\frac{3}{4}})$)时,数列{an}是单调递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A、B两个盒子中都放有4个大小相同的小球,其中A盒子中放有1个红球,3个黑球;B盒子中放有2个红球,2个黑球.
(1)若甲从A盒子中任取一球、乙从B盒子中任取一球,求甲、乙两人所取球的颜色不同的概率;
(2)若甲每次从A盒子中任取两球,记下颜色后放回,抽取两次;乙每次从B盒子中任取两球,记下颜色后放回,抽取两次.在四次取球的结果中,记两球颜色相同的次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列各式的值:
(1)sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)];
(2)sin(arccos$\frac{12}{13}$);
(3)sin(arccos(-$\frac{12}{13}$));
(4)sin($\frac{π}{6}$-arccos$\frac{4}{5}$);
(5)sin(2arccos$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.根据程序写出相应的算法功能为计算并输出S=12+32+52+…+9992的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.区分排列问题与组合问题的关键是取出的元素是否需要排序,不同的顺序是否为解决问题的不同方法:其中排列问题与顺序有关,而组合问题与顺序无关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,一架飞机以600km/h的速度,沿方位角60°的航向从A地出发向B地飞行,飞行了36min后到达E地,飞机由于天气原因按命令改飞C地,已知AD=600$\sqrt{3}$km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.问收到命令时飞机应该沿什么航向飞行,此时E地离C地的距离是多少?(参考数据:tan37°=$\frac{3}{4}$)

查看答案和解析>>

同步练习册答案