精英家教网 > 高中数学 > 题目详情
14.某校高三年级在一次质量考试中,考生成绩情况如表所示:
 成绩
累别
[0,400)[400,480)[480,550)[550,750)
文科考生(人数)673519z
理科考生(人数)53y9
已知用分层抽样的方法(按文理科分层)在不低于550分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了2名,并且该校不低于480分的文科理科考生人数之比为1:2,不低于400分的文科理科考生人数之比为2:5.
(1)求本次高三参加考试的总人数;
(2)如图是其中6名学生的数学成绩的茎叶图,现从这6名考生中随机抽取3名考生进行座谈,求抽取的考生数学成绩均不低于135分的概率.

分析 (1)由分层抽样可得x,y,z的方程,解方程可得x,y,z值,即可求出次高三参加考试的总人数
(2)列举法可得总的基本事件共20种,符合条件的共4种,由古典概型的概率公式计算可得.

解答 解:(1)依题意$\frac{2}{z}$=$\frac{5-2}{9}$,∴z=6,
$\frac{19+6}{y+9}$=$\frac{1}{2}$,$\frac{35+19+6}{x+y+9}$=$\frac{2}{5}$ 解得x=100,y=41
所以本次高三参加考试的总人数为330人
(2)在这6名考生中随机抽取3名考生包含的基本事件为:
(121,130,135),(121,130,138),(121,130,142),(121,130,144),(121,135,138),
(121,135,142),(121,135,144),(121,138,142),(121,138,144),(121,142,144),(130,135,138),(130,135,142),(130,135,144),(130,138,142),(130,138,144),
(130,142,144),(135,138,142),(135,138,144),(135,142,144),(138,142,144)共20个,
其中“抽取的考生成绩均不低于13(5分)”包含的基本事件有4个,
其概率为$\frac{4}{20}$=$\frac{1}{5}$

点评 本题考查古典概型及其概率公式,涉及茎叶图和分层抽样,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设抛物线C:y2=2px(p>0)的焦点为F,点T(t,0)(t>0),且过点F的直线,交C于A,B.
(I)当t=2时,若过T的直线交抛物线C于两点,且两交点的纵坐标乘积为-4,求焦点F的坐标;
(Ⅱ)如图,直线AT、BT分别交抛物线C于点P、Q,连接PQ交x轴于点M,证明:|OF|,|OT|,|OM|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆M的离心率为$\frac{1}{2}$,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2构成的三角形中面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若A与C是椭圆M上关于x轴对称的两点,连接CF2与椭圆的另一交点为B,求证:直线AB与x轴交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1,y1),
B(x2,y2)两点,其中x1>x2
(1)若直线AB的斜率为$\frac{1}{2}$,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在异于点P的点Q,使得对任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q点坐标;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={2,3,4,6},B={2,4,5,7},则A∩B的子集的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过其右焦点F作圆x2+y2=a2的两条切线,切点记作C,D,原点为O,∠COD=$\frac{π}{2}$,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),则|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在各项为正数的数列{an}中,数列{an}的前n项和Sn满足Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$).求a1,a2,a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=$\sqrt{3}$x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

同步练习册答案