精英家教网 > 高中数学 > 题目详情
4.设抛物线C:y2=2px(p>0)的焦点为F,点T(t,0)(t>0),且过点F的直线,交C于A,B.
(I)当t=2时,若过T的直线交抛物线C于两点,且两交点的纵坐标乘积为-4,求焦点F的坐标;
(Ⅱ)如图,直线AT、BT分别交抛物线C于点P、Q,连接PQ交x轴于点M,证明:|OF|,|OT|,|OM|成等比数列.

分析 (I)设过T的直线方程为x=my+t,代入y2=2px,利用韦达定理,结合两交点的纵坐标乘积为-4,t=2,求出p,即可求焦点F的坐标;
(Ⅱ)确定直线PQ的方程,令y=0可得x=-$\frac{{y}_{3}{y}_{4}}{2p}$=$\frac{2{t}^{2}}{p}$,证明|OF||OM|=|OT|2,即可得出结论.

解答 (I)解:设过T的直线方程为x=my+t,代入y2=2px,可得y2-2pmy-2pt=0,
由韦达定理可得,两根之积为-2pt,
∵两交点的纵坐标乘积为-4,
∴-2pt=4,
∵t=2,
∴p=1,
∴焦点F的坐标为($\frac{1}{2}$,0));
(Ⅱ)证明:设A(x1,y1),B(x2,y2),P(x3,y3),Q(x4,y4
同理可得,y1y2=-p2,y1y3=-2pt,y2y4=-2pt,
∴y3y4=-4t2
直线PQ的斜率为$\frac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}$=$\frac{2p}{{y}_{3}+{y}_{4}}$,
∴直线PQ的方程为y-y3=$\frac{2p}{{y}_{3}+{y}_{4}}$(x-x3).
令y=0可得x=-$\frac{{y}_{3}{y}_{4}}{2p}$=$\frac{2{t}^{2}}{p}$,
∴|OF||OM|=|OT|2
∴|OF|,|OT|,|OM|成等比数列.

点评 本题考查直线与抛物线的位置关系,考查韦达定理的运用,考查等比数列的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2+2x-3<0},N={-3,-2,-1,0,1,2},求M∩N=(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|-1<x<2},Z是整数集,则A∩Z={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果一个正三棱锥的底面边长为6,侧棱长为$\sqrt{15}$,那么这个三棱锥的体积是(  )
A.$\frac{9}{2}$B.9C.$\frac{27}{2}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线的一个焦点与抛物线y2=20x的焦点重合,其一条渐近线的斜率等于$\frac{3}{4}$,则该双曲线的标准方程为(  )
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三点P(5,2)、F1(-6,0)、F2(6,0)那么以F1、F2为焦点且过点P的椭圆的短轴长为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线3x-4y+4=0与抛物线x2=4y、圆x2+(y-1)2=1从左至右的交点依次为A,B,C,D,则$\frac{{|{CD}|}}{{|{AB}|}}$的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若动点M到定点A(0,1)与定直线l:y=3的距离之和为4.
(1)求点M的轨迹方程,并画出方程的曲线草图;
(2)记(1)得到的轨迹为曲线C,若曲线C上恰有三对不同的点关于点B(0,t)(t∈R)对称,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高三年级在一次质量考试中,考生成绩情况如表所示:
 成绩
累别
[0,400)[400,480)[480,550)[550,750)
文科考生(人数)673519z
理科考生(人数)53y9
已知用分层抽样的方法(按文理科分层)在不低于550分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了2名,并且该校不低于480分的文科理科考生人数之比为1:2,不低于400分的文科理科考生人数之比为2:5.
(1)求本次高三参加考试的总人数;
(2)如图是其中6名学生的数学成绩的茎叶图,现从这6名考生中随机抽取3名考生进行座谈,求抽取的考生数学成绩均不低于135分的概率.

查看答案和解析>>

同步练习册答案