精英家教网 > 高中数学 > 题目详情
16.直线3x-4y+4=0与抛物线x2=4y、圆x2+(y-1)2=1从左至右的交点依次为A,B,C,D,则$\frac{{|{CD}|}}{{|{AB}|}}$的值为$\frac{1}{16}$.

分析 由题意可得直线3x-4y+4=0过抛物线的焦点(即圆的圆心)F(0,1)点,由求得4y2-17y+4=0,可得y1+y2=$\frac{17}{4}$,y1•y2=1,由此能够推导出答案.

解答 解:由已知圆的方程为x2+(y-1)2=1,抛物线x2=4y的焦点为(0,1),
直线3x-4y+4=0过(0,1)点,则|AB|+|CD|=|AD|-2,
由$\left\{\begin{array}{l}{{x}^{2}=4y}\\{3x-4y+4=0}\end{array}\right.$ 求得4y2-17y+4=0.
设A(x1,y1),D(x2,y2),则y1+y2=$\frac{17}{4}$,y1•y2=1.
∴y1=$\frac{1}{4}$,y2=4,
∴$\frac{{|{CD}|}}{{|{AB}|}}$=$\frac{|AF|-1}{|DF|-1}$=$\frac{({y}_{1}+1)-1}{({y}_{2}+1)-1}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{1}{16}$,
故答案为:$\frac{1}{16}$.

点评 本题考查圆锥曲线和直线 的综合运用,解题时要注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,在三角形ABC中,∠BAC=120°,AB=AC=2,D,E为BC边上的点,且$\overrightarrow{BC}$=3$\overrightarrow{BD}$=2$\overrightarrow{DE}$,则$\overrightarrow{AD}$•$\overrightarrow{AE}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD是直角梯形,AB∥CD,AB=$\frac{1}{2}$CD,AH⊥AD,平面ABCD⊥平面PAD,且△PAD为等边三角形,E是PA的中点,CF=$\frac{1}{4}$CD.
(I)证明:EF∥平面PBC;
(Ⅱ)若AB=$\frac{1}{2}$,AD=1,求几何体PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设抛物线C:y2=2px(p>0)的焦点为F,点T(t,0)(t>0),且过点F的直线,交C于A,B.
(I)当t=2时,若过T的直线交抛物线C于两点,且两交点的纵坐标乘积为-4,求焦点F的坐标;
(Ⅱ)如图,直线AT、BT分别交抛物线C于点P、Q,连接PQ交x轴于点M,证明:|OF|,|OT|,|OM|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=2px(p>o)的准线被圆x2+y2+2x-3=0所截得的线段长为4,则p=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率e=$\frac{\sqrt{3}}{2}$,经过椭圆E的下顶点A和右焦点F的直线l的圆C:x2+(y-2b)2=$\frac{27}{4}$相切.
(1)求椭圆E的方程;
(2)若直线m与l垂直,且交椭圆E与P、Q两点,当$\overrightarrow{OP}•\overrightarrow{OQ}=-\frac{1}{13}$(O是坐标原点)时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x+2|-|x-a|(a∈R,a>0),
(Ⅰ) 若f(x)的最小值是-3,求a的值;
(Ⅱ) 求关于x的不等式|f(x)|≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆M的离心率为$\frac{1}{2}$,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2构成的三角形中面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若A与C是椭圆M上关于x轴对称的两点,连接CF2与椭圆的另一交点为B,求证:直线AB与x轴交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),则|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范围是[1,3].

查看答案和解析>>

同步练习册答案