精英家教网 > 高中数学 > 题目详情
8.如图,在三角形ABC中,∠BAC=120°,AB=AC=2,D,E为BC边上的点,且$\overrightarrow{BC}$=3$\overrightarrow{BD}$=2$\overrightarrow{DE}$,则$\overrightarrow{AD}$•$\overrightarrow{AE}$=$\frac{1}{3}$.

分析 根据向量的数乘运算及向量的加法、减法的几何意义便可得出$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC},\overrightarrow{DE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC},\overrightarrow{AE}=\frac{1}{6}\overrightarrow{AB}+$$\frac{5}{6}\overrightarrow{AC}$,再由条件,∠BAC=120°,AB=AC=2,进行数量积的运算便可求出$\overrightarrow{AD}•\overrightarrow{AE}$的值.

解答 解:根据条件:
$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC}=\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$,$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{BC}$=$\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$;
∴$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}$
=$\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$
=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$;
$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$
=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$
=$\frac{1}{6}\overrightarrow{AB}+\frac{5}{6}\overrightarrow{AC}$;
∴$\overrightarrow{AD}•\overrightarrow{AE}=(\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC})•(\frac{1}{6}\overrightarrow{AB}+\frac{5}{6}\overrightarrow{AC})$
=$\frac{1}{9}{\overrightarrow{AB}}^{2}+\frac{11}{18}\overrightarrow{AB}•\overrightarrow{AC}+\frac{5}{18}{\overrightarrow{AC}}^{2}$
=$\frac{4}{9}+\frac{11}{18}×2×2×(-\frac{1}{2})+\frac{10}{9}$
=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 考查向量的数乘运算,以及向量加法和减法的几何意义,向量数量积的运算及其计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若不等式组$\left\{\begin{array}{l}{y≥0}\\{x-y≥1}\\{x+2y≤4}\\{x+sy+t≥0}\end{array}\right.$,(s,t∈Z)所表示的平面区域是面积为1的直角三角形,则实数t的一个值为(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=|x|-2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)-|3t-2|≥0成立,求参数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2+2x-3<0},N={-3,-2,-1,0,1,2},求M∩N=(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足不等式组$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,则函数z=2x+y的最小值是(  )
A.3B.$\frac{13}{2}$C.12D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在边长为4的等边△ABC中,D为BC的中点,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直角坐标平面内,点A,B的坐标分别为(2,-2),(2,2),不等式|x|+|y|≤2表示的平面区域记为M,设点P是线段AB上的动点,点Q是区域M上的动点,则线段PQ的中点的运动区域的面积是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|-1<x<2},Z是整数集,则A∩Z={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线3x-4y+4=0与抛物线x2=4y、圆x2+(y-1)2=1从左至右的交点依次为A,B,C,D,则$\frac{{|{CD}|}}{{|{AB}|}}$的值为$\frac{1}{16}$.

查看答案和解析>>

同步练习册答案