精英家教网 > 高中数学 > 题目详情
12.如果一个正三棱锥的底面边长为6,侧棱长为$\sqrt{15}$,那么这个三棱锥的体积是(  )
A.$\frac{9}{2}$B.9C.$\frac{27}{2}$D.$\frac{{9\sqrt{3}}}{2}$

分析 作出棱锥的高,利用勾股定理计算棱柱的高代入体积公式计算即可.

解答 解:作三棱锥的高SO,连结AO则O为三角形ABC的中心.
则AO=$\frac{2}{3}•\frac{\sqrt{3}}{2}•6$=2$\sqrt{3}$.
∴棱锥的高SO=$\sqrt{S{A}^{2}-A{O}^{2}}$=$\sqrt{3}$.
∴三棱锥的体积V=$\frac{1}{3}{S}_{△ABC}•SO$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{6}^{2}×\sqrt{3}$=9.
故选B.

点评 本题考查了棱锥的结构特征,体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设i是虚数单位,则|$\frac{3-i}{i+2}\right.$|=(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}满足a1=1,a2=1,an+2=(1+sin2$\frac{nπ}{2}$)an+2cos2$\frac{nπ}{2}$,则该数列的前20项和为1123.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{x}$+alnx,a∈R.
(1)求函数f(x)的单调递减区间;
(2)当x∈[1,2]时,f(x)的最小值是0,求实数a的值;
(3)试问过点P(0,2)可作多少条直线与曲线y=f(x)相切?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD是直角梯形,AB∥CD,AB=$\frac{1}{2}$CD,AH⊥AD,平面ABCD⊥平面PAD,且△PAD为等边三角形,E是PA的中点,CF=$\frac{1}{4}$CD.
(I)证明:EF∥平面PBC;
(Ⅱ)若AB=$\frac{1}{2}$,AD=1,求几何体PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函数的单调区间;
(2)若方程f(x)=2存在两个不同的实数解x1、x2,求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设抛物线C:y2=2px(p>0)的焦点为F,点T(t,0)(t>0),且过点F的直线,交C于A,B.
(I)当t=2时,若过T的直线交抛物线C于两点,且两交点的纵坐标乘积为-4,求焦点F的坐标;
(Ⅱ)如图,直线AT、BT分别交抛物线C于点P、Q,连接PQ交x轴于点M,证明:|OF|,|OT|,|OM|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率e=$\frac{\sqrt{3}}{2}$,经过椭圆E的下顶点A和右焦点F的直线l的圆C:x2+(y-2b)2=$\frac{27}{4}$相切.
(1)求椭圆E的方程;
(2)若直线m与l垂直,且交椭圆E与P、Q两点,当$\overrightarrow{OP}•\overrightarrow{OQ}=-\frac{1}{13}$(O是坐标原点)时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1,y1),
B(x2,y2)两点,其中x1>x2
(1)若直线AB的斜率为$\frac{1}{2}$,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在异于点P的点Q,使得对任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q点坐标;不存在,说明理由.

查看答案和解析>>

同步练习册答案