精英家教网 > 高中数学 > 题目详情
4.设i是虚数单位,则|$\frac{3-i}{i+2}\right.$|=(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

分析 利用复数代数形式的乘除运算化简$\frac{3-i}{i+2}\right.$,然后代入复数模的公式计算.

解答 解:∵$\frac{3-i}{i+2}\right.$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}=\frac{5-5i}{5}=1-i$,
∴|$\frac{3-i}{i+2}\right.$|=|1-i|=$\sqrt{{1}^{2}+(-1)^{2}}=\sqrt{2}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知命题p:?α∈R,sin(π-α)≠-sinα,命题q:?x∈[0,+∞),sinx>x,则下面结论正确的是(  )
A.¬p∨q是真命题B.p∨q是真命题C.¬p∧q是真命题D.q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|lgx≤1},B={-2,5,8,11},则A∩B等于(  )
A.{-2,5,8}B.{5,8}C.{5,8,11}D.{-2,5,8,11}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{2a-b}{c}$=$\frac{cosB}{cosC}$,
(1)求角C的大小;
(2)设函数f(x)=2sinxcosxcosC+2sin2xsinC-$\frac{\sqrt{3}}{2}$,求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=|x|-2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)-|3t-2|≥0成立,求参数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,则实数a的值为(  )
A.5B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2+2x-3<0},N={-3,-2,-1,0,1,2},求M∩N=(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在边长为4的等边△ABC中,D为BC的中点,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果一个正三棱锥的底面边长为6,侧棱长为$\sqrt{15}$,那么这个三棱锥的体积是(  )
A.$\frac{9}{2}$B.9C.$\frac{27}{2}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案