| A. | 5 | B. | 4 | C. | 2 | D. | 1 |
分析 先画出可行域,结合图形分析出目标函数z=2x+3y取得最大值时对应点的坐标,把其代入目标函数再结合目标函数z=2x+3y的最大值为5,即可求出实数a的值.
解答
解:实数x,y满足不等式组$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,如图,
由图可知,$\left\{\begin{array}{l}{x-y=0}\\{y=3a}\end{array}\right.$可得A(3a,3a),即当x=3a,y=3a时,
目标函数z=2x+3y的最大值是15.
15=6a+9a,解得:a=1.
故选:D.
点评 本题主要考查简单线性规划的应用以及数形结合思想的应用.在求目标函数的最值时,一般是在可行域的特殊点处,所以一般在解选择和填空题时,常用特殊点代入法.
科目:高中数学 来源: 题型:选择题
| A. | (1,2016) | B. | [1,2016] | C. | (2,2017) | D. | [2,2017] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<3} | B. | {x|3≤x<4} | C. | {x|x≥4或x<3} | D. | {x|x<-1或x>3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |z|=2 | B. | $\overline{z}$=1-i | C. | z的实部为1 | D. | z+1为纯虚数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 8 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 15 | x | 3 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 3 |
| A. | 12,7 | B. | 10,7 | C. | 10,8 | D. | 11,9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com