精英家教网 > 高中数学 > 题目详情
9.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,则实数a的值为(  )
A.5B.4C.2D.1

分析 先画出可行域,结合图形分析出目标函数z=2x+3y取得最大值时对应点的坐标,把其代入目标函数再结合目标函数z=2x+3y的最大值为5,即可求出实数a的值.

解答 解:实数x,y满足不等式组$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,如图,
由图可知,$\left\{\begin{array}{l}{x-y=0}\\{y=3a}\end{array}\right.$可得A(3a,3a),即当x=3a,y=3a时,
目标函数z=2x+3y的最大值是15.
15=6a+9a,解得:a=1.
故选:D.

点评 本题主要考查简单线性规划的应用以及数形结合思想的应用.在求目标函数的最值时,一般是在可行域的特殊点处,所以一般在解选择和填空题时,常用特殊点代入法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{1-2|x-\frac{1}{2}|,0≤x≤1}\\{lo{g}_{2016}x,x>1}\end{array}\right.$若,a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(1,2016)B.[1,2016]C.(2,2017)D.[2,2017]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={x|x≤-1或x≥3},Q={x|1<x<4},则P∩Q等于(  )
A.{x|-1<x<3}B.{x|3≤x<4}C.{x|x≥4或x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),则双曲线的离心率的平方为$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设i是虚数单位,则|$\frac{3-i}{i+2}\right.$|=(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{(1+i)^{2}}{1-i}$(  )
A.|z|=2B.$\overline{z}$=1-iC.z的实部为1D.z+1为纯虚数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如表:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数34815
分组[110,120)[120,130)[130,140)[140,150]
频数15x32
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1289
分组[110,120)[120,130)[130,140)[140,150]
频数1010y3
则x,y的值分别为(  )
A.12,7B.10,7C.10,8D.11,9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow{b}$)=0,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值是(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函数的单调区间;
(2)若方程f(x)=2存在两个不同的实数解x1、x2,求证:x1+x2>2a.

查看答案和解析>>

同步练习册答案