精英家教网 > 高中数学 > 题目详情
14.已知复数z=$\frac{(1+i)^{2}}{1-i}$(  )
A.|z|=2B.$\overline{z}$=1-iC.z的实部为1D.z+1为纯虚数

分析 利用复数代数形式的乘除运算化简z,则答案可求.

解答 解:z=$\frac{(1+i)^{2}}{1-i}$=$\frac{1+2i+{i}^{2}}{1-i}=\frac{2i}{1-i}=\frac{2i(1+i)}{(1-i)(1+i)}=\frac{-2+2i}{2}=-1+i$,
∴z+1=i为纯虚数.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BF⊥BC,BF<CE,BF=2,AB=1,AD=$\sqrt{5}$.
(1)求证:BC⊥AF;
(2)求证:AF∥平面DCE;
(3)若二面角E-BC-A的大小为120°,求直线DF与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将g(x)=cos(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位后得到函数f(x)=sin(2x+φ)(|φ|<π)的图象,则φ的值为(  )
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)当a=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数;
(Ⅲ)若对任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,则实数a的值为(  )
A.5B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.1B.13C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由曲线y=$\frac{1}{x}$,直线x=1和x=2及x轴围成的封闭图形的面积等于ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列的前项和为Sn,且{${\frac{S_n}{n}}$}是等差数列,已知a1=3,$\frac{S_2}{2}$+$\frac{S_3}{3$+$\frac{S_4}{4}$=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令 cn=$\left\{{\begin{array}{l}{\frac{2}{S_n}(n为奇数)}\\{{2^{{a_{\frac{n}{2}}}}}(n为偶数)}\end{array}}$,设数列{cn}的前n项和为Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C相交于A,B两点,若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,则|AB|=(  )
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

同步练习册答案