精英家教网 > 高中数学 > 题目详情
1.甲乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如表:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数34815
分组[110,120)[120,130)[130,140)[140,150]
频数15x32
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1289
分组[110,120)[120,130)[130,140)[140,150]
频数1010y3
则x,y的值分别为(  )
A.12,7B.10,7C.10,8D.11,9

分析 由频数与总数关系可得x,y的值,先求出从甲、乙校各抽取的人数,再减去已知人数即得

解答 解:(1)从甲校抽取110×$\frac{1200}{1200+1000}$=60(人),
从乙校抽取110×$\frac{1000}{1200+1000}$=50(人),
故x=60-(3+4+8+15+15+3+2)=10,y=50-(1+2+8+9+10+10+3)=7,
故选:B.

点评 本题考考查了频率分布统计表和频数和总数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在等腰梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,|$\overrightarrow{DC}$|=1,点M是线段DC上的动点,则$\overrightarrow{AB}$•$\overrightarrow{AM}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{2a-b}{c}$=$\frac{cosB}{cosC}$,
(1)求角C的大小;
(2)设函数f(x)=2sinxcosxcosC+2sin2xsinC-$\frac{\sqrt{3}}{2}$,求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,则实数a的值为(  )
A.5B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2+2x-3<0},N={-3,-2,-1,0,1,2},求M∩N=(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由曲线y=$\frac{1}{x}$,直线x=1和x=2及x轴围成的封闭图形的面积等于ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在边长为4的等边△ABC中,D为BC的中点,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}{\;}\end{array}\right.$,若z=x-y的最大值为2,则实数m等于(  )
A.-$\frac{2}{3}$B.-1C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三点P(5,2)、F1(-6,0)、F2(6,0)那么以F1、F2为焦点且过点P的椭圆的短轴长为(  )
A.3B.6C.9D.12

查看答案和解析>>

同步练习册答案