| A. | -$\frac{2}{3}$ | B. | -1 | C. | 1 | D. | $\frac{2}{3}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.
解答
解:由约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}{\;}\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x-2y+2=0}\\{mx-y=0}\end{array}\right.$,解得A($\frac{2}{2m-1}$,$\frac{2m}{2m-1}$),
化目标函数z=x-y为y=x-z,
由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为$\frac{2}{2m-1}$-$\frac{2m}{2m-1}$=$\frac{2-2m}{2m-1}$=2,
解得:m=$\frac{2}{3}$.
故选:D.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<3} | B. | {x|3≤x<4} | C. | {x|x≥4或x<3} | D. | {x|x<-1或x>3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 8 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 15 | x | 3 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 3 |
| A. | 12,7 | B. | 10,7 | C. | 10,8 | D. | 11,9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com