分析 (Ⅰ)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;
(Ⅱ)证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;
(Ⅲ)利用等体积法求三棱锥A-MOC的体积即可.
解答 (Ⅰ)证明:∵O,M分别为AB,VA的中点,
∴OM∥VB,
∵VB?平面MOC,OM?平面MOC,
∴VB∥平面MOC;
(Ⅱ)证明:∵AC=BC,O为AB的中点,
∴OC⊥AB,
又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC?平面ABC,
∴OC⊥平面VAB,
∵OC?平面MOC,
∴平面MOC⊥平面VAB;
(Ⅲ)解:在等腰直角三角形ACB中,AC=BC=$\sqrt{2}$,∴AB=2,OC=1,
∴等边三角形VAB的边长为2,S△VAB=$\sqrt{3}$,
∵O,M分别为AB,VA的中点.
∴${S}_{△AMO}=\frac{1}{4}{S}_{△VAB}=\frac{\sqrt{3}}{4}$.
又∵OC⊥平面VAB,
∴三棱锥${V}_{A-MOC}={V}_{C-MOA}=\frac{1}{3}×\frac{\sqrt{3}}{4}×1=\frac{\sqrt{3}}{12}$.
点评 本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2015 | B. | $\frac{4031}{2}$ | C. | 2016 | D. | $\frac{4033}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,-6) | B. | (4,6) | C. | (-2,-2) | D. | (2,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com