精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,的中点.

(Ⅰ)求证:∥平面;   (Ⅱ)求二面角的余弦值;

(Ⅲ)(理科)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

 

 

【答案】

(Ⅰ)证明:连结,交于点,连结.

是直三棱柱,

得 四边形为矩形,的中点.

中点,所以中位线,

所以 ,      

因为 平面平面

所以 ∥平面.    ………………4分

(Ⅱ)解:由是直三棱柱,且,故两两垂直.

如图建立空间直角坐标系.                        

,则.

所以               

设平面的法向量为,则有[来源:Zxxk.Com]

所以  取,得.           

易知平面的法向量为.                   

由二面角是锐角,得 .     

所以二面角的余弦值为.

(Ⅲ)解:假设存在满足条件的点.

因为在线段上,,故可设,其中.

所以 .                

因为角,所以.          

,解得,舍去.         

所以当点为线段中点时,角.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=
2
,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为
 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题

如图,在直三棱柱中, AB=1,

∠ABC=60.

(1)证明:

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津市高三第二次月考文科数学 题型:解答题

(本小题满分13分)如图,在直三棱柱中,分别为的中点,四边形是边长为的正方形.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省高三2月月考理科数学 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013届云南省高二9月月考数学试卷 题型:解答题

如图,在直三棱柱中,,点的中点.

求证:(1);(2)平面.

 

 

 

查看答案和解析>>

同步练习册答案