精英家教网 > 高中数学 > 题目详情
7.函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=-4sin($\frac{πx}{8}+\frac{π}{4}$)B.y=4sin($\frac{x}{8}-\frac{π}{4}$)C.y=-4sin($\frac{x}{8}-\frac{π}{4}$)D.y=4sin($\frac{x}{8}+\frac{π}{4}$)

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求φ,可得函数的解析式.

解答 解:根据函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象,可得A=4,$\frac{1}{2}•\frac{2π}{ω}$=6+2,
∴ω=$\frac{π}{8}$,再结合$\frac{π}{8}$•(-2)+φ=kπ,k∈Z,可得φ=$\frac{π}{4}$,∴函数的解析式为y=-4sin($\frac{πx}{8}$+$\frac{π}{4}$),
故选:A.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求下列函数的导数:
(1)f(x)=(1+sinx)(1-4x);
(2)f(x)=$\frac{x}{x+1}$-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在如图中,O为圆心,A,B为圆周上二点,AB弧长为4,扇形AOB面积为4,则圆心角∠AOB的弧度数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式(x+5)(x-1)(x-6)>0的解集是{x|-5<x<1或x>6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}的前n项和为Sn,S9=45,则a5=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是(  )
A.f(1)<ef(0),f(2)<e2f(0)B.f(1)>ef(0),f(2)<e2f(0)C.f(1)<ef(0),f(2)>e2f(0)D.f(1)>ef(0),f(2)>e2f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设O为△ABC的外心,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,则M是△ABC的(  )
A.重心(三条中线交点)B.内心(三条角平分线交点)
C.垂心(三条高线交点)D.外心(三边中垂线交点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,海平面某区域内有A,B,C三座小岛,岛C在A的北偏东70°方向,岛C在B的北偏东40°方向,且A,B两岛间的距离为3海里.
(1)求B,C两岛间的距离;
(2)经测算海平面上一轮船D位于岛C的北偏西50°方向,且与岛C相距3$\sqrt{2}$海里,求轮船在岛A的什么位置.(注:小岛与轮船视为一点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=a{x^3}-\frac{3}{2}{x^2}+1(a>0)$在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上有f(x)>0恒成立,则a的取值范围为(  )
A.(0,2]B.[2,+∞)C.(0,5)D.(2,5]

查看答案和解析>>

同步练习册答案