| A. | y=-4sin($\frac{πx}{8}+\frac{π}{4}$) | B. | y=4sin($\frac{x}{8}-\frac{π}{4}$) | C. | y=-4sin($\frac{x}{8}-\frac{π}{4}$) | D. | y=4sin($\frac{x}{8}+\frac{π}{4}$) |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求φ,可得函数的解析式.
解答 解:根据函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象,可得A=4,$\frac{1}{2}•\frac{2π}{ω}$=6+2,
∴ω=$\frac{π}{8}$,再结合$\frac{π}{8}$•(-2)+φ=kπ,k∈Z,可得φ=$\frac{π}{4}$,∴函数的解析式为y=-4sin($\frac{πx}{8}$+$\frac{π}{4}$),
故选:A.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | f(1)<ef(0),f(2)<e2f(0) | B. | f(1)>ef(0),f(2)<e2f(0) | C. | f(1)<ef(0),f(2)>e2f(0) | D. | f(1)>ef(0),f(2)>e2f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心(三条中线交点) | B. | 内心(三条角平分线交点) | ||
| C. | 垂心(三条高线交点) | D. | 外心(三边中垂线交点) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | [2,+∞) | C. | (0,5) | D. | (2,5] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com