精英家教网 > 高中数学 > 题目详情
10.在如图中,O为圆心,A,B为圆周上二点,AB弧长为4,扇形AOB面积为4,则圆心角∠AOB的弧度数为(  )
A.1B.2C.3D.4

分析 首先根据扇形的面积求出半径,再由弧长公式得出结果.

解答 解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,
根据扇形的面积公式S=$\frac{1}{2}$lr,可得:4=$\frac{1}{2}$×4r,
解得:r=2,
再根据弧长公式l=rα,即:4=2α,
解得α=2,
可得扇形的圆心角的弧度数是2.
故选:B.

点评 此题主要是利用扇形的面积公式先求出扇形的半径,再利用弧长公式求出圆心角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知a>0,b>0.
(1)求证:$\frac{1}{a}$+$\frac{2}{b}$≥$\frac{8}{2a+b}$;
(2)若c>0,求证:在a-b-c,b-a-c,c-a-b中至少有两个负数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=3,an+1=2an,那么a4=(  )
A.24B.18C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径圆上,则双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow p=({2,-1}),\overrightarrow q=({x,2})$,且$\overrightarrow p⊥\overrightarrow q$,则$|{\overrightarrow p+λ\overrightarrow q}|({λ∈R})$的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin2ωx+(2$\sqrt{3}$sinωx-cosωx)cosωx的图象相邻的两个对称中心为($\frac{π}{12}$,0)和($\frac{7π}{12}$,0),其中ω为常数.
(1)求函数f(x)单调递增区间;
(2)在锐角△ABC,内角A,B,C对边a,b,c且满足a=2bsinA,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=2-4sinx-4cos2x的最大值和最小值,并写出函数取最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=-4sin($\frac{πx}{8}+\frac{π}{4}$)B.y=4sin($\frac{x}{8}-\frac{π}{4}$)C.y=-4sin($\frac{x}{8}-\frac{π}{4}$)D.y=4sin($\frac{x}{8}+\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>|x1-x2|,求a的取值范围.

查看答案和解析>>

同步练习册答案