精英家教网 > 高中数学 > 题目详情
17.已知a>0,b>0.
(1)求证:$\frac{1}{a}$+$\frac{2}{b}$≥$\frac{8}{2a+b}$;
(2)若c>0,求证:在a-b-c,b-a-c,c-a-b中至少有两个负数.

分析 (1)利用分析法证明;
(2)假设a≤b≤c,利用不等式的性质判断三个数的正负即可.

解答 证明:(1)要证:$\frac{1}{a}+\frac{2}{b}$≥$\frac{8}{2a+b}$,
只需证:$\frac{2a+b}{ab}$≥$\frac{8}{2a+b}$,
只需证:(2a+b)2≥8ab,
即证:4a2+b2-4ab≥0,
即证:(2a-b)2≥0,
显然上式恒成立,
故$\frac{1}{a}+\frac{2}{b}$≥$\frac{8}{2a+b}$.
(2)假设0<a≤b≤c,
显然a-b-c≤b-b-c=-c<0,
b-a-c≤c-a-c=-a<0,
∴在a-b-c,b-a-c,c-a-b中至少有两个负数.

点评 本题考查了不等式的证明,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=4,$\overrightarrow{e}$为单位向量,当$\overrightarrow{a}$、$\overrightarrow{e}$的夹角为$\frac{2π}{3}$时,$\overrightarrow{a}$+$\overrightarrow{e}$在$\overrightarrow{a}$-$\overrightarrow{e}$上的投影为$\frac{5\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从数字0,1,2,3,4,5中任选3个数字,可组成没有重复数字的三位数共有(  )
A.60B.90C.100D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=Asin(2x+φ)(A>0,|φ|<π)在一个周期内的图象如图所示,则此函数的解析式为(  )
A.y=2sin(2x+$\frac{π}{3}$)B.y=2sin(2x-$\frac{2π}{3}$)C.y=2sin(2x-$\frac{π}{3}$)D.y=2sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解喜好体育运动是否与性别有关,某报记者随机采访50个路人,将调查情况进行整理后制成下表:
 年龄(岁)[15,25)[25,35)
 
[35,45)
 15
[45,55)
 
[55,65)
 
[65,75)
 
 频数 510  8 10 5 5
 喜好人数 4 6  6 3
(1)在调查的结果中,喜好体育运动的女性有10人,不喜好体育运动的男性有5人,请将下面的2×2列联表补充完整,并判断能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
  喜好体育运动 不喜好体育运动合计 
 男生  5 
 女生 10  
 合计   50
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不喜好体育运动的人数为X,求随机变量X的分布列和数学期望.
下面的临界值表供参考:
 P(K2≥k)0.15 0.10 0.05  0.025 0.010 0.005 0.001
2.072 2.706  3.841 5.024 6.6357.879  10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在一条南北方向的步行街同侧有8块广告,牌的底色用、红或蓝两种颜色,若要求相邻两块牌的底色不都为红色,8块牌不能用同一底色,则不同的配色方案共有54种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P(x,y)是圆x2+y2=2y上的动点,
(1)求2x+y的取值范围;
(2)若x+y+a≥0有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的导数:
(1)f(x)=(1+sinx)(1-4x);
(2)f(x)=$\frac{x}{x+1}$-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在如图中,O为圆心,A,B为圆周上二点,AB弧长为4,扇形AOB面积为4,则圆心角∠AOB的弧度数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案