精英家教网 > 高中数学 > 题目详情
5.函数y=Asin(2x+φ)(A>0,|φ|<π)在一个周期内的图象如图所示,则此函数的解析式为(  )
A.y=2sin(2x+$\frac{π}{3}$)B.y=2sin(2x-$\frac{2π}{3}$)C.y=2sin(2x-$\frac{π}{3}$)D.y=2sin(2x+$\frac{2π}{3}$)

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.

解答 解:根据函数y=Asin(2x+φ)(A>0,|φ|<π)在一个周期内的图象,
可得A=2,$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{12}$-(-$\frac{π}{12}$),∴ω=2,
再结合五点法作图可得2•(-$\frac{π}{12}$)+φ=$\frac{π}{2}$,∴φ=$\frac{2π}{3}$,
∴y=2sin(2x+$\frac{2π}{3}$),
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知复数z是方程(2-i)z=i的解,且z对应的向量$\overrightarrow{OA}$与向量$\overrightarrow{OB}$关于实轴对称,则向量$\overrightarrow{OB}$对应的复数为(  )
A.-$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$-$\frac{2}{5}$iC.-$\frac{1}{3}$+$\frac{2}{3}$iD.-$\frac{1}{3}$-$\frac{2}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax+1(a∈R).
(1)若函数f(x)的图象在x=1处的切线l垂直于直线y=x,求实数a的值及直线l的方程;
(2)求函数f(x)的单调区间;
(3)若x>1,求证:lnx<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知非空集合A,B同时满足以下四个条件:
①A∪B={1,2,3,4,5};   
②A∩B=∅;
③card(A)∉A;         
④card(B)∉B.
注:其中card(A)、card(B)分别表示A、B中元素的个数.
如果集合A中只有一个元素,那么A={2}、{3}、{4}、{5};
如果集合A中有3个元素,请写出一对满足条件的集合A,B:A={1,2,4},B={3,5}或A={1,2,5},B={3,4},或A={2,4,5},B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下茎叶图记录了甲、乙两个篮球队在3次不同比赛中的得分情况.乙队记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以m表示.那么在3次比赛中,乙队平均得分超过甲队平均得分的概率是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-$\frac{2+a{x}^{2}}{{e}^{x}}$(a>0)在区间[0,1]上有极值,且函数f(x)在区间[0,1]上的最小值不小于-$\frac{7}{e}$,则a的取值范围是(  )
A.(2,5]B.(2,+∞)C.(1,4}D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>0,b>0.
(1)求证:$\frac{1}{a}$+$\frac{2}{b}$≥$\frac{8}{2a+b}$;
(2)若c>0,求证:在a-b-c,b-a-c,c-a-b中至少有两个负数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有两个相等实数根
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出符合条件的所有m,n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径圆上,则双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案