精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),x∈[-$\frac{π}{3}$,$\frac{π}{2}$].
(1)求证:($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{1}{3}$,求cosx的值;
(3)求函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+2|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值及相应的x的值.

分析 (1)分别求得向量$\overrightarrow{a}$,$\overrightarrow{b}$的模,运用向量的平方即为模的平方,计算即可得证;
(2)运用向量的数量积的坐标表示和两角和的余弦公式,可得向量$\overrightarrow{a}$,$\overrightarrow{b}$的数量积,再由向量的平方即为模的平方,结合二倍角公式,计算即可得到所求值;
(3)运用向量的数量积的性质,化简整理可得f(x)的解析式,再由余弦函数的图象和性质,结合二次函数的最值的求法,即可得到所求最小值和相应的x的值.

解答 解:(1)证明:向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),
可得|$\overrightarrow{a}$|=$\sqrt{co{s}^{2}\frac{3x}{2}+si{n}^{2}\frac{3x}{2}}$=1,|$\overrightarrow{b}$|=$\sqrt{co{s}^{2}\frac{x}{2}+si{n}^{2}\frac{x}{2}}$=1,
即有($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\overrightarrow{a}$2-$\overrightarrow{b}$2=1-1=0,
则($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)$\overrightarrow{a}$•$\overrightarrow{b}$=cos$\frac{3}{2}$xcos$\frac{x}{2}$-sin$\frac{3}{2}$xsin$\frac{x}{2}$=cos2x,
|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{1}{3}$,可得($\overrightarrow{a}$-$\overrightarrow{b}$)2=$\frac{1}{9}$,
即为$\overrightarrow{a}$2+$\overrightarrow{b}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{9}$,即2-2cos2x=$\frac{1}{9}$,
可得cos2x=$\frac{17}{18}$,即2cos2x=$\frac{25}{18}$,
由x∈[-$\frac{π}{3}$,$\frac{π}{2}$],可得cosx=$\frac{5}{6}$;
(3)函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+2|$\overrightarrow{a}$+$\overrightarrow{b}$|=cos2x+2$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$
=cos2x+$\sqrt{2+2cos2x}$=2cos2x+2cosx-1,
由x∈[-$\frac{π}{3}$,$\frac{π}{2}$],可得cosx∈[0,1],
令t=cosx(t∈[0,1]),
则y=2t2+2t-1=2(t+$\frac{1}{2}$)2-$\frac{3}{2}$,
可得函数在[0,1]递增,
即有t=0,即x=$\frac{π}{2}$时,函数取得最小值,且为-1.

点评 本题考查向量的数量积的坐标表示和三角函数的化简和求值,考查向量垂直的条件和模的公式,以及三角函数的恒等变换公式的运用,同时考查余弦函数的图象和性质,二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.2015年12月27日全国人大常委会表决通过了人口与计划生育法修正案全面二孩定于20I6年1月1日起正式实施,为了解适龄民众对放开生育二胎政策的态度,某机构从某市选取70后和80后作为调查对象.随机调查了100位,得到数据如下表:
 生二孩不生二孩合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若以该市70后公民中随机抽取3位,记其中生二孩的人数为X,求随机变量X的分布列和数学期望.
(2)根据调查数据,是否在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{3}$,则cos(2α+$\frac{3π}{5}$)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆周上有20个点,过任意两点可画一条弦,这些弦在圆内的交点最多能有4845个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{AB}$=3$\overrightarrow{AP}$,设$\overrightarrow{BP}$=λ$\overrightarrow{PA}$,则实数λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列各函数的微分:
(1)y=x4+x${\;}^{\frac{3}{2}}$-sin$\frac{π}{7}$;
(2)y=(x+1)lnx;
(3)y=exsinx;
(4)y=$\frac{x-3}{2x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(2003年)已知sinα•cosα=-$\frac{1}{5}$,则cos4α的值为(  )
A.$\frac{1}{25}$B.$\frac{8}{25}$C.$\frac{17}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.3个人要坐在一排的8个空座位上,若每个人左右都有空座位,求不同坐法有多少种?

查看答案和解析>>

同步练习册答案