精英家教网 > 高中数学 > 题目详情
11.2015年12月27日全国人大常委会表决通过了人口与计划生育法修正案全面二孩定于20I6年1月1日起正式实施,为了解适龄民众对放开生育二胎政策的态度,某机构从某市选取70后和80后作为调查对象.随机调查了100位,得到数据如下表:
 生二孩不生二孩合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若以该市70后公民中随机抽取3位,记其中生二孩的人数为X,求随机变量X的分布列和数学期望.
(2)根据调查数据,是否在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”?并说明理由.

分析 (1)由已知得70后“生二胎”的概率为$\frac{2}{3}$,且X~B(3,$\frac{2}{3}$),由此能求出随机变量X的分布列和数学期望.
(2)求出K2=$\frac{100}{33}≈3.030>2.706$,由此在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”.

解答 解:(1)由已知得70后“生二胎”的概率为$\frac{2}{3}$,且X~B(3,$\frac{2}{3}$),
∴P(X=0)=${C}_{3}^{0}(\frac{1}{3})^{3}$=$\frac{1}{27}$,
P(X=1)=${C}_{3}^{1}(\frac{2}{3})(\frac{1}{3})^{2}$=$\frac{2}{9}$,
P(X=2)=${C}_{3}^{2}(\frac{2}{3})^{2}(\frac{1}{3})$=$\frac{4}{9}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{3})^{3}$=$\frac{8}{27}$,

 X 0 1 2 3
 P $\frac{1}{27}$ $\frac{2}{9}$ $\frac{4}{9}$ $\frac{8}{27}$
∴EX=3×$\frac{2}{3}$=2.
(2)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
=$\frac{100×(30×10-45×15)^{2}}{75×25×45×55}$=$\frac{100}{33}≈3.030>2.706$,
∴在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”.

点评 本题考查离散型随机变量的分布列和数学期望的求法,考查是否在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关的判断,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为$\frac{1}{3}$,赔钱的概率是$\frac{2}{3}$;乙股票赚钱的概率为$\frac{1}{4}$,赔钱的概率为$\frac{3}{4}$.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{33}}{7}$,且(4,0)在椭圆C上,圆M:x2+y2=65.
(1)求椭圆C的方程;
(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2,试探究直线l1,l2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将两对双胞胎姐妹与另一对非双胞胎姐妹共六位同学排成一行,则双胞胎姐妹间各自不相邻的概率为(  )
A.$\frac{1}{3}$B.$\frac{7}{15}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P是函数y=sin(2x+α)图象与x轴的一个交点,A,B为P点右侧距离点P最近的一个最高点和最低点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{{π}^{2}}{4}$-1B.$\frac{3{π}^{2}}{16}$-1C.$\frac{3{π}^{2}}{4}$-1D.$\frac{{π}^{2}}{8}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,椭圆的右焦点F(c,0),椭圆的右顶点为A,上顶点为B,原点到直线AB的距离为$\frac{\sqrt{6}}{3}$.
(I)求椭圆C的方程;
(Ⅱ)判断在x轴上是否存在异于F的一点G,满足过点G且斜率为k(k≠0)的直线l与椭圆C交于M、N两点,P是点M关于x轴的对称点,N、F、P三点共线,若存在,求出点G坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点是($\sqrt{3}$,0),点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆上,O为坐标原点,当直线l:y=kx+m(m≠0)与椭圆C相交于A、B两点时,对满足条件的任意m的值,都有|OA|2+|OB|2=5.
(1)求椭圆C的方程.
(2)求△AOB的面积S的最大值,并求出相应m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.医院打算从5名外科医生,4名内科医生,3名脑科医生中,选出2名不同科的医生到山区进行义诊,问有多少种不同的选派方式?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),x∈[-$\frac{π}{3}$,$\frac{π}{2}$].
(1)求证:($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{1}{3}$,求cosx的值;
(3)求函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+2|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值及相应的x的值.

查看答案和解析>>

同步练习册答案