·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{3}$£¬¼´a2-b2=3£¬½«PµÄ×ø±ê´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÇóµÃÈý½ÇÐεÄÃæ»ý£¬ÓÉ»ù±¾²»µÈʽ¿ÉµÃ×î´óÖµ£¬¼°µÈºÅ³ÉÁ¢µÄÌõ¼þ£¬´úÈëÅбðʽºÍÌõ¼þ£¬¼ìÑé¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{3}$£¬¼´a2-b2=3£¬
PµÄ×ø±ê´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{3}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1£¬
½âµÃa=2£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬m¡Ù0£¬
Oµ½Ö±ÏßABµÄ¾àÀëΪd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ
£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÉÅбðʽ64k2m2-4£¨1+4k2£©£¨4m2-4£©£¾0£¬
»¯¼òµÃ1+4k2-m2£¾0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃ
x1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨1+4{k}^{2}£©^{2}}-\frac{16{m}^{2}-16}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$£¬
¼´ÓС÷MNPÃæ»ýΪ$\frac{1}{2}$d•|AB|=2•|m|•$\frac{\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$=2•$\frac{\sqrt{{m}^{2}£¨1+4{k}^{2}-{m}^{2}£©}}{1+4{k}^{2}}$¡Ü2•$\frac{{m}^{2}+1+4{k}^{2}-{m}^{2}}{2}$•$\frac{1}{1+4{k}^{2}}$=1£¬
µ±ÇÒ½öµ±m2=1+4k2-m2£¬¼´1+4k2=2m2È¡µÃ×î´óÖµ1£¬
ÓÉ1+4k2=2m2´úÈëÅбðʽ´óÓÚ0³ÉÁ¢£»
¿ÉµÃx1+x2=-$\frac{4k}{m}$£¬x1x2=2-$\frac{2}{{m}^{2}}$£¬
ÓÉy1=kx1+m£¬y2=kx2+m£¬
¿ÉµÃ|OA|2+|OB|2=x12+y12+x22+y22=£¨1+k2£©[£¨x1+x2£©2-2x1x2]+2m2+2km£¨x1+x2£©=5£¬
¼´ÓУ¨1+k2£©[£¨-$\frac{4k}{m}$£©2-2£¨2-$\frac{2}{{m}^{2}}$£©]+2m2+2km£¨-$\frac{4k}{m}$£©=4-4k2+2m2=4+1=5£®
Ôò1+4k2=2m2ºã³ÉÁ¢£®
¹Êµ±m=¡À$\sqrt{\frac{1+4{k}^{2}}{2}}$ʱ£¬¡÷OABµÄÃæ»ýÈ¡µÃ×î´óÖµ1£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| Éú¶þº¢ | ²»Éú¶þº¢ | ºÏ¼Æ | |
| 70ºó | 30 | 15 | 45 |
| 80ºó | 45 | 10 | 55 |
| ºÏ¼Æ | 75 | 25 | 100 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 13 | B£® | $\sqrt{37}$ | C£® | $\sqrt{13}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x¡Ý0}\\{\sqrt{-x}}&{x£¼0}\end{array}\right.$ | B£® | y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x¡Ý0}\\{-\sqrt{-x}}&{x£¼0}\end{array}\right.$ | ||
| C£® | y=$\left\{\begin{array}{l}{2x}&{x¡Ý0}\\{\sqrt{-x}}&{x£¼0}\end{array}\right.$ | D£® | y=$\left\{\begin{array}{l}{2x}&{x¡Ý0}\\{-\sqrt{-x}}&{x£¼0}\end{array}\right.$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com