3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãÊÇ£¨$\sqrt{3}$£¬0£©£¬µãP£¨$\sqrt{3}$£¬$\frac{1}{2}$£©ÔÚÍÖÔ²ÉÏ£¬OÎª×ø±êÔ­µã£¬µ±Ö±Ïßl£ºy=kx+m£¨m¡Ù0£©ÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µãʱ£¬¶ÔÂú×ãÌõ¼þµÄÈÎÒâmµÄÖµ£¬¶¼ÓÐ|OA|2+|OB|2=5£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©Çó¡÷AOBµÄÃæ»ýSµÄ×î´óÖµ£¬²¢Çó³öÏàÓ¦mµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{3}$£¬¼´a2-b2=3£¬½«PµÄ×ø±ê´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÇóµÃÈý½ÇÐεÄÃæ»ý£¬ÓÉ»ù±¾²»µÈʽ¿ÉµÃ×î´óÖµ£¬¼°µÈºÅ³ÉÁ¢µÄÌõ¼þ£¬´úÈëÅбðʽºÍÌõ¼þ£¬¼ìÑé¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{3}$£¬¼´a2-b2=3£¬
PµÄ×ø±ê´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{3}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1£¬
½âµÃa=2£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬m¡Ù0£¬
Oµ½Ö±ÏßABµÄ¾àÀëΪd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
½«Ö±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ
£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÉÅбðʽ64k2m2-4£¨1+4k2£©£¨4m2-4£©£¾0£¬
»¯¼òµÃ1+4k2-m2£¾0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃ
x1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨1+4{k}^{2}£©^{2}}-\frac{16{m}^{2}-16}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$£¬
¼´ÓС÷MNPÃæ»ýΪ$\frac{1}{2}$d•|AB|=2•|m|•$\frac{\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$=2•$\frac{\sqrt{{m}^{2}£¨1+4{k}^{2}-{m}^{2}£©}}{1+4{k}^{2}}$¡Ü2•$\frac{{m}^{2}+1+4{k}^{2}-{m}^{2}}{2}$•$\frac{1}{1+4{k}^{2}}$=1£¬
µ±ÇÒ½öµ±m2=1+4k2-m2£¬¼´1+4k2=2m2È¡µÃ×î´óÖµ1£¬
ÓÉ1+4k2=2m2´úÈëÅбðʽ´óÓÚ0³ÉÁ¢£»
¿ÉµÃx1+x2=-$\frac{4k}{m}$£¬x1x2=2-$\frac{2}{{m}^{2}}$£¬
ÓÉy1=kx1+m£¬y2=kx2+m£¬
¿ÉµÃ|OA|2+|OB|2=x12+y12+x22+y22=£¨1+k2£©[£¨x1+x2£©2-2x1x2]+2m2+2km£¨x1+x2£©=5£¬
¼´ÓУ¨1+k2£©[£¨-$\frac{4k}{m}$£©2-2£¨2-$\frac{2}{{m}^{2}}$£©]+2m2+2km£¨-$\frac{4k}{m}$£©=4-4k2+2m2=4+1=5£®
Ôò1+4k2=2m2ºã³ÉÁ¢£®
¹Êµ±m=¡À$\sqrt{\frac{1+4{k}^{2}}{2}}$ʱ£¬¡÷OABµÄÃæ»ýÈ¡µÃ×î´óÖµ1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³È˾­ÓªÒ»¸ö³é½±ÓÎÏ·£¬¹Ë¿Í»¨·Ñ2ԪǮ¿É¹ºÂòÒ»´ÎÓÎÏ·»ú»á£¬Ã¿´ÎÓÎÏ·ÖУ¬¹Ë¿Í´Ó×°ÓÐ1¸öºÚÇò£¬3¸öºìÇò£¬6¸ö°×ÇòµÄ²»Í¸Ã÷´ü×ÓÖÐÒÀ´Î²»·Å»ØµØÃþ³ö3¸öÇò£¨³ýÑÕÉ«ÍâÆäËû¶¼Ïàͬ£©£¬¸ù¾ÝÃþ³öµÄÇòµÄÑÕÉ«Çé¿ö½øÐжҽ±£®¹Ë¿Í»ñµÃÒ»µÈ½±¡¢¶þµÈ½±¡¢ÈýµÈ½±¡¢ËĵȽ±Ê±·Ö±ð¿ÉÁìÈ¡½±½ðaÔª¡¢10Ôª¡¢5Ôª¡¢2Ôª£®Èô¾­ÓªÕß½«¹Ë¿ÍÃþ³öµÄÇòµÄÑÕÉ«Çé¿ö·Ö³ÉÒÔÏÂÀà±ð£ºA£º1¸öºÚÇò2¸öºìÇò£»B£º3¸öºìÇò£»C£ºÇ¡ÓÐ1¸ö°×Çò£»D£ºÇ¡ÓÐ2¸ö°×Çò£»E£º3¸ö°×Çò£®ÇÒ¾­ÓªÕ߼ƻ®½«ÎåÖÖÀà±ð°´ÕÕ·¢Éú»ú»á´ÓСµ½´óµÄ˳Ðò·Ö±ð¶ÔÓ¦ÖÐÒ»µÈ½±¡¢ÖжþµÈ½±¡¢ÖÐÈýµÈ½±¡¢ÖÐËĵȽ±¡¢²»Öн±Îå¸ö²ã´Î£®
£¨¢ñ£©Çëд³öÒ»ÖÁËĵȽ«·Ö±ð¶ÔÓ¦µÄÀà±ð£¨Ð´³ö×Öĸ¼´¿É£©£»
£¨¢ò£©Èô¾­ÓªÕß²»´òËãÔÚÕâ¸öÓÎÏ·µÄ¾­ÓªÖп÷±¾£¬ÇóaµÄ×î´óÖµ£»
£¨¢ó£©Èôa=50£¬µ±¹Ë¿ÍÃþ³öµÄµÚÒ»¸öÇòÊǺìÇòʱ£¬ÇóËûÁìÈ¡µÄ½±½ðµÄƽ¾ùÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¹ýµãP£¨1£¬-1£©×÷Ô²x2+y2-2x-2y+1=0µÄÇÐÏߣ¬ÇóÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®2015Äê12ÔÂ27ÈÕÈ«¹úÈË´ó³£Î¯»á±í¾öͨ¹ýÁËÈË¿ÚÓë¼Æ»®ÉúÓý·¨ÐÞÕý°¸È«Ãæ¶þº¢¶¨ÓÚ20I6Äê1ÔÂ1ÈÕÆðÕýʽʵʩ£¬ÎªÁ˽âÊÊÁäÃñÖÚ¶Ô·Å¿ªÉúÓý¶þÌ¥Õþ²ßµÄ̬¶È£¬Ä³»ú¹¹´ÓijÊÐѡȡ70ºóºÍ80ºó×÷Ϊµ÷²é¶ÔÏó£®Ëæ»úµ÷²éÁË100룬µÃµ½Êý¾ÝÈçÏÂ±í£º
 Éú¶þº¢²»Éú¶þº¢ºÏ¼Æ
70ºó301545
80ºó451055
ºÏ¼Æ7525100
£¨1£©ÒÔÕâ100¸öÈ˵ÄÑù±¾Êý¾Ý¹À¼Æ¸ÃÊеÄ×ÜÌåÊý¾Ý£¬ÇÒÒÔÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÈôÒÔ¸ÃÊÐ70ºó¹«ÃñÖÐËæ»ú³éÈ¡3룬¼ÇÆäÖÐÉú¶þº¢µÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨2£©¸ù¾Ýµ÷²éÊý¾Ý£¬ÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1µÄǰÌáÏ£¨ÓÐ90%ÒÔÉÏ×Ô°ÑÎÕ£©ÈÏΪ¡°Éú¶þº¢ÓëÄêÁäÓйء±£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Æ½ÃæÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪ$\frac{2¦Ð}{3}$£¬$\overrightarrow a=£¨{3£¬0}£©£¬|{\overrightarrow b}|=2$£¬Ôò$|{\overrightarrow a+2\overrightarrow b}|$µÈÓÚ£¨¡¡¡¡£©
A£®13B£®$\sqrt{37}$C£®$\sqrt{13}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì4kx2-4kx+k+1=0µÄÁ½¸öʵÊý¸ù£®
£¨1£©ÇóʵÊýk£¬Ê¹£¨2x1-x2£©£¨x1-2x2£©=-$\frac{3}{2}$£»
£¨2£©Çóʹ$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2µÄֵΪÕûÊýµÄʵÊýkµÄÕûÊýÖµ£»
£¨3£©Èôk=-2£¬¦Ë=$\frac{{x}_{1}}{{x}_{2}}$£¬ÊÔÇó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬AOÊÇBC±ßÉϵÄÖÐÏߣ¬KΪAOÉÏÒ»µã£¬ÇÒ$\overrightarrow{AO}$=2$\overrightarrow{AK}$£¬¹ýµãKµÄÖ±Ïß·Ö±ð½»Ö±ÏßAB¡¢ACÓÚ²»Í¬µÄÁ½µãM£¬N£¬Èô$\overrightarrow{AB}$=m$\overrightarrow{AM}$£¬$\overrightarrow{AC}$=n$\overrightarrow{AN}$£¬Ôòm+n=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªsin£¨$\frac{¦Ð}{5}$-¦Á£©=$\frac{1}{3}$£¬Ôòcos£¨2¦Á+$\frac{3¦Ð}{5}$£©=-$\frac{7}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýy=$\left\{\begin{array}{l}{2x}&{x¡Ý0}\\{-{x}^{2}}&{x£¼0}\end{array}\right.$µÄ·´º¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x¡Ý0}\\{\sqrt{-x}}&{x£¼0}\end{array}\right.$B£®y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x¡Ý0}\\{-\sqrt{-x}}&{x£¼0}\end{array}\right.$
C£®y=$\left\{\begin{array}{l}{2x}&{x¡Ý0}\\{\sqrt{-x}}&{x£¼0}\end{array}\right.$D£®y=$\left\{\begin{array}{l}{2x}&{x¡Ý0}\\{-\sqrt{-x}}&{x£¼0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸