分析 (Ⅰ)分别求出P(A),P(B),P(C),P(D),P(E),由此能求出中一至四等奖分别对应的类别.
(Ⅱ)设顾客进行一次游戏经营者可盈利X元,列出分布列,求出数学期望,由此能求出a的最大值.
(Ⅲ)a=50,当顾客摸出的第一个球是红球时时,求出中一等奖的概率,中二等奖的概率,中三等奖的概率,中四等奖的概率,由此能求出他领取的奖金的平均值.
解答 解:(Ⅰ)P(A)=$\frac{{C}_{1}^{1}{C}_{3}^{2}}{{C}_{10}^{3}}$=$\frac{3}{120}$,
P(B)=$\frac{{C}_{3}^{3}}{{C}_{10}^{3}}$=$\frac{1}{120}$,
P(C)=$\frac{{C}_{6}^{1}({C}_{1}^{1}{C}_{3}^{1}+{C}_{3}^{2})}{{C}_{10}^{3}}$=$\frac{36}{120}$,
P(D)=$\frac{{C}_{6}^{2}({C}_{1}^{1}+{C}_{3}^{1})}{{C}_{10}^{3}}$=$\frac{60}{120}$,
P(E)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{20}{120}$,
∵P(B)<P(A)<P(E)<P(C)<P(D),
∴中一至四等奖分别对应的类别是B,A,E,C.
(Ⅱ)设顾客进行一次游戏经营者可盈利X元,则:
| X | -(a-2) | -8 | -3 | 1 | 2 |
| P | $\frac{1}{120}$ | $\frac{3}{120}$ | $\frac{20}{120}$ | $\frac{36}{120}$ | $\frac{60}{120}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数(分数段) | 频数(人数) | 频率 |
| [60,70) | 9 | x |
| [70,80) | y | 0.38 |
| [80,90) | 16 | 0.32 |
| [90,100) | z | s |
| 合计 | p | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com