精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{33}}{7}$,且(4,0)在椭圆C上,圆M:x2+y2=65.
(1)求椭圆C的方程;
(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2,试探究直线l1,l2的位置关系,并说明理由.

分析 (1)由题意列关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;
(2)当过点A与椭圆C相切的一条切线的斜率不存在时,切线方程为x=±4,得到直线y=±7恰好为过点A与椭圆相切的另一条切线,于是两切线l1,l2互相垂直;当过点A(m,n)与椭圆C相切的切线的斜率存在时,设切线方程为y-n=k(x-m),联立直线方程和椭圆方程,得到关于x的一元二次方程,利用判别式等于0能推导出直线l1、l2始终相互垂直.

解答 解:(1)由题意得$\left\{\begin{array}{l}{b=4}\\{\frac{c}{a}=\frac{\sqrt{33}}{7}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=7,b=4,
∴椭圆C的方程为$\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1$;
(2)如图,
①当过点A与椭圆C:$\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1$相切的一条切线的斜率不存在时,
此时切线方程为x=±4,
∵点A在圆M:x2+y2=65上,则A(±4,±7),
∴直线y=±7恰好为过点A与椭圆相切的另一条切线,于是两切线l1,l2互相垂直;
②当过点A(m,n)与椭圆C相切的切线的斜率存在时,
设切线方程为y-n=k(x-m),
由$\left\{\begin{array}{l}{y-n=k(x-m)}\\{\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1}\end{array}\right.$,
得(49+16k2)x2+32k(n-mk)x+16k2m2-32kmn+16n2-49×16=0,
由于直线与椭圆相切,
∴△=1024k2(n-mk)2-4(49+16k2)(16k2m2-32kmn+16n2-49×16)=0,
整理,得(16-m2)k2+2mnk+49-n2=0,
∴${k}_{1}{k}_{2}=\frac{49-{n}^{2}}{16-{m}^{2}}$,
∵P(m,n)在圆x2+y2=65上,∴m2+n2=65,
∴16-m2=n2-49,
∴k1k2=-1,则两直线互相垂直.
综上所述,直线l1、l2始终相互垂直.

点评 本题考查椭圆方程的求法,考查两直线的位置关系的判断,训练了两直线垂直与斜率的关系,体现了分类讨论的数学思想方法,注意函数与方程思想的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.△ABC的内角A、B、C所对的边分别为a、b、c,若a=1,b+c=$\sqrt{6}$,且cosA=$\frac{1}{4}$,则△ABC的面积为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某人经营一个抽奖游戏,顾客花费2元钱可购买一次游戏机会,每次游戏中,顾客从装有1个黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖.顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a元、10元、5元、2元.若经营者将顾客摸出的球的颜色情况分成以下类别:A:1个黑球2个红球;B:3个红球;C:恰有1个白球;D:恰有2个白球;E:3个白球.且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.
(Ⅰ)请写出一至四等将分别对应的类别(写出字母即可);
(Ⅱ)若经营者不打算在这个游戏的经营中亏本,求a的最大值;
(Ⅲ)若a=50,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A,B,C,D是平面上互异的四个点,若($\overrightarrow{DB}$+$\overrightarrow{DC}$-2$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,则△ABC的形状是(  )
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设p:?x∈R,x2-4x+3m>0,q:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆C上,且△PF1F2面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程
(Ⅱ)若直线l与椭圆C交于A,B两点.△OAB的面积为1,$\overrightarrow{OG}$=s$\overrightarrow{OA}$+t$\overrightarrow{OB}$(s,t∈R),当点G在椭圆C上运动时,试问s2+t2是否为定值,若是定值,求出这个定值,若不是定值,求出s2+t2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.过点P(1,-1)作圆x2+y2-2x-2y+1=0的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2015年12月27日全国人大常委会表决通过了人口与计划生育法修正案全面二孩定于20I6年1月1日起正式实施,为了解适龄民众对放开生育二胎政策的态度,某机构从某市选取70后和80后作为调查对象.随机调查了100位,得到数据如下表:
 生二孩不生二孩合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若以该市70后公民中随机抽取3位,记其中生二孩的人数为X,求随机变量X的分布列和数学期望.
(2)根据调查数据,是否在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{3}$,则cos(2α+$\frac{3π}{5}$)=-$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案