分析 (1)先利用韦达定理求出x1,x2的关系,再化简,将其代入,即可求得k的值,
(2)同分,再将原式写成含有x1+x2和x1•x2的形式,
(3)将k=-2代入,求得x1和x2的值,再求λ.
解答 解:(1)已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根,
则${x}_{1}+{x}_{2}=-\frac{-4k}{4k}=1$,${x}_{1}•{x}_{2}=\frac{k+1}{4k}$;
(2x1-x2)(x1-2x2)=$2{x}_{1}^{2}-5{x}_{1}{x}_{2}+2{x}_{2}^{2}$=2${(x}_{1}+{x}_{2})^{2}-9{x}_{1}{x}_{2}$,
则原式=$2-9×\frac{k+1}{4k}$=$-\frac{3}{2}$,
解得:k=$\frac{9}{5}$;
(2)$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2
=$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{{x}_{1}{x}_{2}}-2$
=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}-2$
=$\frac{4k}{k+1}-4$
=$\frac{4}{k+1}$;
k为整数时,则k的取值为3,1,0,-2,-3,-5;
(3)k=-2,代入,方程化为:8x2+8x-1=0;
${x}_{1,2}=\frac{2±\sqrt{2}}{4}$,
λ=$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2+\sqrt{2}}{2-\sqrt{2}}$=$3+2\sqrt{2}$,
λ=$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2-\sqrt{2}}{2+\sqrt{2}}$=$3-2\sqrt{2}$,
故λ=3±2$\sqrt{2}$.
点评 本题主要考察利用韦达定理进行化简求值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{7}{15}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com