精英家教网 > 高中数学 > 题目详情
20.以双曲线$\frac{x^2}{3}-\frac{y^2}{6}$=1的右焦点为焦点的抛物线标准方程为y2=12x.

分析 由双曲线的性质,确定抛物线的焦点坐标,即可求出抛物线标准方程.

解答 解:双曲线$\frac{x^2}{3}-\frac{y^2}{6}$=1的右焦点为(3,0),
∴抛物线的焦点为(3,0),
∴抛物线标准方程为y2=12x,
故答案为:y2=12x.

点评 本题考查双曲线、抛物线的性质,考查抛物线的标准方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API[0.50](0,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间∴F对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$
非重度污染重度污染合计
供暖季
非供暖季
合计100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.tan300°+$\frac{cos(-405°)}{sin750°}$的值为$\sqrt{2}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn 满足:Sn=(-1)n+1n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\left\{\begin{array}{l}{(2a-1)x+1(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是(-∞,+∞)上的减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,根据平面向量数量积的定义证明向量性质:|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|,并用该性质证明不等式:(mp+nq)2≤(m2+n2)(p2+q2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},满足a1=2,an+1=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$,求证:1<an<$\frac{3}{2}$+$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线x2=4y上的动点P在x轴上的射影为点M,点A(3,2),则|PA|+|PM|的最小值为$\sqrt{10}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z满足z(1+i)=4-2i(i为虚数单位),则|z|=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案